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Outline

some background: scattering theory

(quantum) chaotic or stochastic scattering

supersymmetry for distributions

exact results in threefold way for off–diagonal
scattering matrix elements and cross sections

exact results for the Ericson transition

new universality emerges in a universality

comparison with microwave experiments and nuclear data



Introduction to Scattering Theory



Scattering Process

waves propagate in (fictitious) channels, scattered at target

scattering matrix S connects ingoing and outgoing waves

M channels,

S is M ×M

flux conservation

SS† = 1M = S†S

no direct reactions (a ̸= b) −→ energy average S diagonal

transmission coefficients Ta = 1− |Saa|2



Scattering Experiments in Nuclear Physics

differential cross sections, squares of scattering matrix elements

from isolated resonances towards Ericson regime of strongly
overlapping resonances

this example: Richter et al. (1960’s)



Scattering Experiments with Classical Waves

microwaves

elastic
reveberations

direct measurement of the scattering matrix

Weaver, Ellegaard, Stöckmann, Richter, Shridar groups (90’s...10’s)



(Quantum) Stochastic/Chaotic Scattering



Mexico Approach to Stochastic Scattering

to study statistics, S itself modeled as a stochastic quantity

minimum information principle yields probability measure

P(S)dµ(S) ∼ dµ(S)

| detβ(M−1)+2(1M − S⟨S⟩†)|

no invariance under time–reversal: S unitary, β = 2

invariance under time–reversal T :

T 2 = +11, S unitary symmetric, β = 1
T 2 = −11, S unitary self–dual, β = 4

input: ensemble average ⟨S⟩, assume ⟨S⟩ = S

problem: energy and parameter dependence not clear !



Microscopic Description of Scattering Process ...

H =
N∑

n,m=1

|n⟩Hnm ⟨m|+
M∑
a=1

∫
dE |a,E ⟩E ⟨a,E |

+
∑
n,a

(
|n⟩
∫

dE Wna ⟨a,E |+ c.c.

)

bound states
Hamiltonian H

N ≫ 1 bound states |n⟩

M channel states |a,E ⟩

coupling Wna



... Yields Scattering Matrix

Sab(E ) = δab − i2πW †
aG (E )Wb

with matrix resolvent containing bound states Hamiltonian H

G (E ) =
1N

E1N − H + iπ
M∑
c=1

WcW
†
c

absence of direct reactions consistent with orthogonality

W †
aWb =

γa
π
δab

Mahaux, Weidenmüller (1969)



Heidelberg Approach to Stochastic Scattering

Hamiltonian H modeled as a Gaussian random matrix

P(H) ∼ exp

(
−Nβ

4v2
trH2

)
form of P(H) irrelevant on local scale of mean level spacing

−→ two universalities, experimental and mathematical

no invariance under time–reversal: H Hermitean, β = 2

invariance under time–reversal T :

T 2 = +11, H real symmetric, β = 1
T 2 = −11, H Hermitean self–dual, β = 4

apply Gaussian Orthogonal/Unitary/Symplectic Ensembles

Wigner (1950’s), Dyson (1960’s), Weidenmüller (1960’s), ...



Supersymmetry for Correlations



Correlation Functions in RMT

Gaussian ensemble (β = 1, 2, 4) of N × N random matrices H

k–level correlations are probability density to find a level
in each interval [xp, xp + dxp], p = 1, . . . , k

can be expressed with resolvent

R
(β)
k (x1, . . . , xk) =

∫
d [H] exp(−trH2)

k∏
p=1

tr
1N

H − xp1N

(notation is a bit simplified)



Generating Function for Correlations

introduce scalar source variables Jp

R
(β)
k (x1, . . . , xk) =

∂k∏k
p=1 ∂Jp

Z
(β)
k (x + J)

∣∣∣∣∣
J=0

and generating function

Z
(β)
k (x + J) =

∫
d [H] exp(−trH2)

k∏
p=1

det(H − xp − Jp)

det(H − xp + Jp)



Supersymmetric Representation

vectors zp, ζp with commuting and anticommuting entries

det(H − xp − Jp)

det(H − xp + Jp)
=

∫
d [zp] exp

(
iz†p(H − xp + Jp)zp

)
∫

d [ζp] exp
(
iζ†p(H − xp − Jp)ζp

)
average over H just Gaussian!

intermediate result is integral over zp, ζp, p = 1, . . . , k

but depends only on scalar products

z†pzq, ζ
†
pζq commuting

z†pζq, ζ
†
pzq anticommuting



Supermatrix Integral

Hubbard–Stratonovitch transformation: “use scalar products as
integration variables, remaining ones are trivial”

identity (yes, this is exact) for generating function

Z
(β)
k (x + J) =

∫
d [σ] exp(−strσ2)sdet−N(σ − x − J)

where σ is a 2k × 2k or 4k × 4k supermatrix

−→ drastic reduction of dimensions

Efetov (1983), Verbaarschot, Zirnbauer (1985), TG (1991,2006)



Scattering Matrix

Sab(E ) = δab − i2πW †
aG (E )Wb

does not depend on an invariant, but on resolvent matrix

G (E ) =
1N

E1N − H + iπ
M∑
c=1

WcW
†
c

introduce N × N matrix source variable J

Gnm(E ) =
∂

∂Jnm

det(G−1(E )− J)

det(G−1(E ) + J)

∣∣∣∣∣
J=0

determinants linear in H −→ supersymmetry method

Verbaarschot, Weidenmüller, Zirnbauer (1985)



Many Results Obtained in this Way, for Example

two–point correlation functions ⟨S∗
ab(E1)Scd(E2)⟩

β = 1 Verbaarschot, Weidenmüller, Zirnbauer (1985)
β = 2 Savin, Fyodorov, Sommers (2006)

higher order correlations, perturbative time–invariance breaking

Davis, Boosé (1988, 1989), Davis, Hartmann (1990)

distribution of diagonal elements P(Saa(E ))

Fyodorov, Savin, Sommers (2005)

... but: does not work for distribution P(Sab(E )), a ̸= b

−→ new method needed



New Variant of the Supersymmetry Method:

Supersymmetry for Distributions



Distribution of Scattering Matrix Elements

Sab(E ) = δab − i2πW †
aG (E )Wb

wish to calculate distribution of real and imaginary part

℘s(Sab) = π
(
(−i)sW †

aGWb + i sW †
bG

†Wa

)
such that

x1 = ℘1(Sab) = ReSab(E ) and x2 = ℘2(Sab) = Im Sab(E )

distribution given by

Ps(xs) =

∫
d [H] exp(−trH2)δ(xs − ℘s(Sab)) , s = 1, 2



Characteristic Function

obtain distribution by Fourier backtransform of

Rs(k) =

∫
d [H] exp(−trH2) exp(−ik℘s(Sab))

insert definition of scattering matrix

Rs(k) =

∫
d [H] exp(−trH2) exp(−ikπW †AsW )

with W =

[
Wa

Wb

]
and As =

[
0 (−i)sG

i sG † 0

]
where As Hermitean, but contains H inverse

problem: have to invert As to perform H average !



Crucial Trick

Fourier transform in W space ! — Yields

exp(−ikπW †AsW )

∼
∫

d [z ] exp

(
i

2
(W †z + z†W )

)
detβ/2A−1

s exp

(
i

4πk
z†A−1

s z

)

now use anticommuting variables

detβ/2A−1
s ∼

∫
d [ζ] exp

(
i

4πk
ζ†A−1

s ζ

)

now H linear in exponent −→ supersymmetry applicable !

different role of commuting and anticommuting variables



Supermatrix Model

Hubbard–Stratonovitch transformation gives

Rs(k) =

∫
d [σ] exp

(
− rstrσ2 − β

2
str lnΣ− i

4
Fs
)

with 2k × 2k or 4k × 4k supermatrix σ and r = 4βπ2k2N/v2

Σ = σE ⊗ 1N +
i

4k
L⊗

M∑
c=1

WcW
†
c , σE = σ − E

4πk
18/β

matrix L is some superspace metrik

Fs apart from details W †Σ−1W , projects onto boson–boson space

−→ symmetry breaking differs from the one for correlations



Supersymmetric Non–Linear sigma Model

limit N −→ ∞, unfolding by saddlepoint approximation
integrate out “massive” modes

left with integral over “Goldstone” modes Q,
free rotations, coset manifold in superspace

Rs(k) =

∫
dµ(Q) exp

(
− i

4
Fs

) M∏
c=1

sdet−β/2
(
18/β +

iγc
4πk

Q−1
E L

)

integrate out all remaining anticommuting variables

left with ordinary integrals, two for β = 2, four for β = 1

−→ drastically reduced number of integration variables



Similarity and Difference to Case of Correlations

structure of non–linear sigma model very similar to the one in
Verbaarschot, Weidenmüller, Zirnbauer (1985) for correlation
functions ⟨S∗

ab(E1)Scd(E2)⟩

supergroup structure and hyperbolic symmetry (noncompactness)
are the same, coset manifolds

β = 2 U(1, 1|2)/(U(1|1)× U(1|1))

β = 1 UOSp(2, 2|4)/(UOSp(2|2)× UOSp(2|2))

but for different reasons

supersymmetry breaking not the same: imbalance,
different roles for commuting and anticommuting variables

Fs ∼ [W † 0†]Σ−1

[
W
0

]
, projects onto boson–boson space only



Analytical Results versus Numerics



Towards Ericsson Regime for β = 2

average resonance width / mean level spacing Γ/D = 0.716 (top)
and Γ/D = 8.594 (bottom)

real and imaginary parts equally distributed for β = 2



Towards Ericsson Regime for β = 1

average resonance width / mean level spacing Γ/D = 1.273 (top)
and Γ/D = 7.162 (bottom)

real and imaginary parts not equally distributed for β = 1



Comparison with Microwave Experiments



... vs Numerics and Experiment for β = 1

frequency range 10 . . . 11GHz,
average resonance width / mean level spacing Γ/D = 0.234



Analytical Result vs Experiment for β = 1

frequency range 24 . . . 25GHz,
average resonance width / mean level spacing Γ/D = 1.21



Distribution of Cross Sections



Joint Probability Density Needed

cross section σab(E ) = |Sab(E )|2 = Re 2Sab(E ) + Im 2Sab(E )

joint pdf P(Re Sab, ImSab) = P(Sab,S
∗
ab)

good news: can extend previous calculation into complex plane

bivariate characteristic function R(k , k∗)

distribution p(σab(E )) =

∫
d2k R(k , k∗) J0(

√
σab(E )|k |)



Characteristic Functions for Microwave Data

Γ/D = 0.234 Γ/D = 1.21



Analytics vs Microwave, Nuclear Cross Section Data

left: microwave data, Γ/D = 0.7, 1.2
right: nuclear data, Γ/D ≈ 1, 30

p(0) ≈ 1 indicates Ericson regime



Transition to the Ericson Regime



Cartoon of the Ericson Transition

average resonance width / average mean level spacing = Γ/D



Pedestrian–Type–of Motivation

scattering matrix element as function of energy E something like

Sab(E ) ∼
∑
r

Ar

E − Er − iΓr/2

cross section is absolute value squared

σab(E ) = |Sab(E )|2

∼
∑
r

|Ar |2

(E − Er )2 + Γ2r /4

+ 2Re
∑
r<r ′

ArAr ′

(E − Er + iΓr/2)(E − Er ′ − iΓr ′/2)

Γ/D small −→ only first term relevant −→ isolated resonances

when Γ/D gets larger −→ second term also becomes relevant
−→ resonances start overlapping



Distributions in the Ericson Regime

Ericson (early 1960’s): if Γ/D very large, many open channels, and
transmission coefficients Tc comparable, then

real and imaginary parts of Sab(E ) are Gaussian distributed

cross sections σab(E ) are exponentially distributed

heuristic reasoning based on Central–Limit–type–of arguments,
neither analytical derivation nor analytical understanding of the
transition — when does it set in?

finally completely and exactly solved

new universality emerges out of the universal setting of
quantum chaotic/stochastic scattering

Köhnes, TG (2025)



Sketch of Exact Derivation



Weisskopf Estimate and Transmission Coefficients

Weisskopf estimate relates transmission coefficients to parameter

Ξ =
Γ

D
=

1

2π

M∑
c=1

Tc

consider infinite number M of channels where Tc ∼ 1

M

−→ Ξ =
Γ

D
very large

−→ asymptotics by expanding in
1

Ξ



Characteristic Function ...

unitary case, characteristic function double integral

Rs(k) = 1−
∞∫
1

dλ1

1∫
−1

dλ2
k2FU(λ1, λ2)

4(λ1 − λ2)2
(
t1a t

1
b + t2a t

2
b

)
J0(k

√
t1a t

1
b)

s = 1, 2 for real and imaginary part, equally distributed

g+
c = 2/Tc − 1 , t jc =

√
|λ2j − 1|/(g+

c + λj)

channel factor FU(λ1, λ2) =
M∏
c=1

g+
c + λ2

g+
c + λ1

.



... Generates All Moments

Rs(k) =
∞∑
n=0

(−1)n
k2n

(2n)!
x2ns

with x1 = ReSab , x2 = ImSab

all moments exist, because scattering matrix is
unitary and thus its elements bounded above



Moments and their Asymptotics

channel factor in the asymptotic limit

FU(λ1, λ2) −→ exp (−πΞ(λ1 − λ2))

parameter Ξ = Γ/D pops up !

first and second leading terms of moments

x2ns =
(2n)!

n!

(
1

2(g+
a + 1)(g+

b + 1)πΞ

)n

+
g+
a g+

b − g+
a − g+

b − 3

(2(g+
a + 1)(g+

b + 1)πΞ)n+1

Γ(2n + 1)

Γ(n − 1)
+ O

(
1

Ξn+2

)

with x1 = ReSab, x2 = ImSab



Distribution of Real and Imaginary Parts of Sab(E )

resummation of characteristic function, then Fourier backtransform

distribution is Gaussian with leading correction

Ps(xs) ≃

√
Ξ(g+

a + 1)(g+
b + 1)

2
exp

(
−
π(g+

a + 1)(g+
b + 1)Ξx2s

2

)
(
1 +

(
3− 6π(g+

a + 1)(g+
b + 1)Ξx2s

+(π(g+
a + 1)(g+

b + 1))2Ξ2x4s

)
g+
a g+

b − g+
a − g+

b − 3

8(g+
a + 1)(g+

b + 1)πΞ

)



Distribution Properly Rescaled

rescaling ξs =
√
Ξxs

Ps(ξs) ≃

√
(g+

a + 1)(g+
b + 1)

2
exp

(
−
π(g+

a + 1)(g+
b + 1)ξ2s

2

)
(
1 +

(
3− 6π(g+

a + 1)(g+
b + 1)ξ2s

+(π(g+
a + 1)(g+

b + 1))2ξ4s

)
g+
a g+

b − g+
a − g+

b − 3

8(g+
a + 1)(g+

b + 1)πΞ

)

pure
1

Ξ
=

1

Γ/D
asymptotics



Distribution of Cross Sections

rescaling σ̃ab(E ) = Ξσab(E )

distribution is exponential with leading correction

p(σ̃ab) ≃ 1

2
exp

(
−
(g+

a + 1)(g+
b + 1)πσ̃ab
2

)
(
(g+

a + 1)(g+
b + 1)π + (g+

a g+
b − g+

a − g+
b − 3)

(
1− (g+

a + 1)(g+
b + 1)πσ̃ab +

1

8
((g+

a + 1)(g+
b + 1)πσ̃ab)

2

)
1

Ξ

)

value at zero

p(0) ≃
(g+

a + 1)(g+
b + 1)π

2
+

g+
a g+

b − g+
a − g+

b − 3

2Ξ



Analytical Results

versus Microwave Experiments



Distribution of Scattering Matrix Elements
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Distribution of Cross Sections
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What have we learned ?



Conclusions and Outlook

solved longstanding problem within Heidelberg approach

supersymmetry for distributions of off–diagonal scattering
matrix elements and cross sections

exact results in threefold way: othogonal, unitary, symplectic

full analytical understanding of transition to Ericson regime

transition is fast, quantitatively captured

new universality emerging in a universality

comparison with microwave experiments and nuclear data

Brouwer’s equivalence proof Heidelberg–Mexico
implies: now have explicit handle on Mexico approach
for arbitrary channel number

also: condensed matter and wireless communication



Thank You for Your Attention !



Supermathematics and Supersymmetry



Two Kinds of Variables

k1 complex commuting variables zp, p = 1, . . . , k1

k2 complex anticommuting variables ζp, p = 1, . . . , k2

ζp ζq = −ζq ζp , in particular ζ2p = 0

every function is a finite polynomial, for example for k2 = 2

f (ζ1, ζ2) = c0 + c11ζ1 + c12ζ2 + c2ζ1ζ2

complex conjugation ζp −→ ζ∗p −→ ζ∗∗p = −ζp

ζp ζ
∗
q = −ζ∗q ζp

commuting and anticommuting variables commute

zp ζq = ζq zp and zp ζ
∗
q = ζ∗q zp



Linear Algebra in Superspace

supervectors ψ =

[
z
ζ

]
and supermatrices σ =

[
a µ
ν b

]
matrices a, b have commuting entries
matrices µ, ν have anticommuting entries

σψ =

[
a µ
ν b

] [
z
ζ

]
=

[
az + µζ
νz + bζ

]
=

[
z ′

ζ ′

]
= ψ′

supertrace strσ = tr a− tr b −→ strσ1σ2 = strσ2σ1

superdeterminant sdetσ =
det(a− µb−1ν)

det b

−→ sdetσ1σ2 = sdetσ1 sdetσ2



Analysis in Superspace

derivative
∂ζp
∂ζq

= δpq and
∂ζ∗p
∂ζq

= 0

Berezin integral

∫
dζp = 0 and

∫
ζpdζp =

1√
2π

for example∫
exp(−aζ∗pζp)dζ

∗
pdζp =

∫ (
1− aζ∗pζp

)
dζ∗pdζp =

a

2π

apart from factors, derivative and integral are the same !

change of variables ψ → χ = χ(ψ) requires

Jacobian or Berezinian

∫
f (ψ)d [ψ] =

∫
f (ψ(χ))sdet

∂ψ

∂χ
d [χ]



Gaussian Integrals over Supervectors

matrix a has commuting entries∫
exp(−z†az)d [z ] = det−1 a

2π
and∫

exp(−ζ†aζ)d [ζ] = det
a

2π

σ is a supermatrix∫
exp(−ψ†σψ)d [ψ] = sdet−1 σ

2π

−→ divergencies removed −→ renormalization

−→ Random Matrix Theory and disordered systems



Symplectic Symmetry



New Theoretical Challenge

two time–reversal invariant classes

with (total) spin–rotation symmetry:
S unitary symmetric, H real symmetric, β = 1
no spin–rotation symmetry:
S unitary self–dual, H Hermitean self–dual, β = 4

β = 4 for mathematical reasons called symplectic case

the physical system must involve spin degrees of freedom

Kramers degeneracy of eigenvalues, typically doubly degenerate

Hamiltonian H from Gaussian Symplectic Ensemble (GSE)



New Experiments, New Realizations

long time thought to be a mathematical curiosity of only minor
physics relevance, this changes rapidly !

Kuemmeth, Bolotin, Shi, Ralph (2008)
Gold nanoparticles, level statistics is GSE due to strong
spin–orbit coupling

Joyner, Müller, Sieber (2014)
graph has GSE statistics, no spin, rather equivalent geometry

microwave experiments (2014–2023)

Kuhl/Stöckmann group (Nice/Marburg)
Dietz group (Lanzhou, Daejeon)
Sirko group (Warsaw)



Where is the Spin in the GSE ?

GSE generated by GUE matrices H0 and π rotated H∗
0

coupled by matrices V , −V ∗

also: every channel gets two spin directions a ↑, a ↓

every (!) matrix element is a 2× 2 quaternion (Pauli matrices)

one scattering matrix element Sab(E ) =

[
Sa↑b↑(E ) Sa↑b↓(E )
Sa↓b↑(E ) Sa↓b↓(E )

]



Exact Results and Data Comparisons



Supersymmetric Non–Linear sigma Model

calculation more involved than for β = 1, 2, result similar

close structural similarity to β = 1, 8× 8 supermatrices,
integral over “Goldstone” modes Q, coset manifold in superspace,
two versions of UOSp(2, 2|4)/UOSp(2|2)⊗ UOSp(2|2)

Rs(k) =

∫
dµ(Q) exp

(
− i

4
Fs

) M∏
c=1

sdet−2
(
18 +

iγc
4πk

Q−1
E L

)

integrate out all remaining anticommuting variables,
left with three ordinary integrals for β = 4

−→ drastically reduced number of integration variables

Gluth, TG (2025)



Exact Results vs RMT Monte Carlo Simulation
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Exact Results vs Quantum Graph Calculation
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