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QOutline

some background: scattering theory
(quantum) chaotic or stochastic scattering

supersymmetry for distributions

exact results in threefold way for off-diagonal
scattering matrix elements and cross sections

exact results for the Ericson transition

@ new universality emerges in a universality

@ comparison with microwave experiments and nuclear data



Introduction to Scattering Theory



Scattering Process

waves propagate in (fictitious) channels, scattered at target

scattering matrix S connects ingoing and outgoing waves

e

cha&/ M channels,
SisMx M

interaction

zone
Ty

flux conservation
SSt =1y =SS

c

no direct reactions (a # b) —  energy average S diagonal

transmission coefficients T, =1 — |S,,/?



Scattering Experiments in Nuclear Physics
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Scattering Experiments with Classical Waves
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direct measurement of the scattering matrix

Weaver, Ellegaard, Stéckmann, Richter, Shridar groups (90’s...10’s)



(Quantum) Stochastic/Chaotic Scattering



Mexico Approach to Stochastic Scattering

to study statistics, S itself modeled as a stochastic quantity

minimum information principle yields probability measure

du(S)
P(S)du(S) ~ | detPMD+2(1,

— S($)M)

@ no invariance under time—reversal: S unitary, § =2
@ invariance under time—reversal T:

o 72 =41, S unitary symmetric, 3 =1
o 72 = —1, S unitary self—dual, 3 = 4

input: ensemble average (S), assume (S) =S

problem: energy and parameter dependence not clear !



Microscopic Description of Scattering Process ...

M
=Y |n>Hnm<m\+§/d5\a,E>E<a,E\

> <|n> / dE Wi, (a, E| + c.c.)

bound states le.E>

Hamiltonian H la.E}\C’/\’\/

N > 1 bound states |n) _—

|dE>
M channel states |a, E) |bE>

coupling W, le.E>



. Yields Scattering Matrix

Sab(E) = 0ap — 2t WIG(E)W,

with matrix resolvent containing bound states Hamiltonian H

Ty
M
Ely—H+imy WW]

c=1

G(E) =

absence of direct reactions consistent with orthogonality

wiw, = %@b

Mahaux, Weidenmiiller (1969)



Heidelberg Approach to Stochastic Scattering

Hamiltonian H modeled as a Gaussian random matrix
NB
P(H) ~ exp | ———5tr H?
(H) ~ o (- pgtri)
form of P(H) irrelevant on local scale of mean level spacing
—>  two universalities, experimental and mathematical

@ no invariance under time—reversal: H Hermitean, § =2
@ invariance under time—reversal T

o 72 =41, H real symmetric, 8 =1

o 72 = —1, H Hermitean self-dual, 5 =4

apply Gaussian Orthogonal /Unitary/Symplectic Ensembles

Wigner (1950's), Dyson (1960's), Weidenmiiller (1960's), ...



Supersymmetry for Correlations



Correlation Functions in RMT

Gaussian ensemble (5 =1,2,4) of N x N random matrices H

k—level correlations are probability density to find a level
in each interval [xp,x, + dxp], p=1,...,k

can be expressed with resolvent
k

R,((B)(Xl,...,xk) = /d[H]exp(—trH2)Htr o
p=1

Iy
—xpln

(notation is a bit simplified)



Generating Function for Correlations

introduce scalar source variables J,

8k
Z,gﬁ)(x +J)

RIE/B)(XL s )Xk) = =k 4.
ngl 8JP J=0

and generating function

k det(H — xp —

Jp)

ZO(x + 1) = / d[H] exp(—tr H2)

e det(H — x, + Jp)



Supersymmetric Representation

vectors z,, (p, with commuting and anticommuting entries

det(H — x, — Jp) L
det(H — xp + Jp) /d[zp] exp (’Zp(H — Xt Jp)zp>

/ d[Cy] exp (igj,(H — Xy — J,,)g,,)

average over H just Gaussian!

intermediate result is integral over z,,(,, p=1,...,k

but depends only on scalar products
zgzq, C};Cq commuting

z,‘;gq, C;zq anticommuting



Supermatrix Integral

Hubbard—Stratonovitch transformation: “use scalar products as
integration variables, remaining ones are trivial”

identity (yes, this is exact) for generating function
ZO(x + 1) = / d[o] exp(—str 0?)sdet ~V(o — x — J)
where o is a 2k x 2k or 4k x 4k supermatrix

——  drastic reduction of dimensions

Efetov (1983), Verbaarschot, Zirnbauer (1985), TG (1991,2006)



Scattering Matrix

Sab(E) = 6.0 — i2nWIG(E)W,

does not depend on an invariant, but on resolvent matrix

G(E) = Ly

M
Ely —H+im ) WW]
c=1
introduce N x N matrix source variable J
0 det(G‘l(E) —J)
0Jpm det(G—L(E) + J) o

Gom(E) =
determinants linear in H  —— supersymmetry method

Verbaarschot, Weidenmiiller, Zirnbauer (1985)



Many Results Obtained in this Way, for Example

two—point correlation functions (53, (E1)Scq(E2))

B =1 Verbaarschot, Weidenmiiller, Zirnbauer (1985)
S =2 Savin, Fyodorov, Sommers (2006)

higher order correlations, perturbative time—invariance breaking

Davis, Boosé (1988, 1989), Davis, Hartmann (1990)

distribution of diagonal elements P(S,5(E))
Fyodorov, Savin, Sommers (2005)

... but: does not work for distribution P(S,5(E)), a # b

— new method needed



New Variant of the Supersymmetry Method:

Supersymmetry for Distributions



Distribution of Scattering Matrix Elements

Sab(E) = 0ap — 2t WIG(E)W,
wish to calculate distribution of real and imaginary part
0s(Sap) = m((—i)°WIGW, + i*W]GTw,)

such that
x1 = ©1(Sap) = ReS;p(E)  and  x2 = 02(Sap) = Im S,5(E)

distribution given by

Pulx) = / d[H] exp(—tr H2)5(xs — ps(Swp)) s 5 = 1,2



Characteristic Function

obtain distribution by Fourier backtransform of
R(k) = / d[H] exp(—tr H) exp(—ikps(Sas))

insert definition of scattering matrix
Rs(k) = /d[H] exp(—tr H?) exp(—ikr WTA;W)

. W, 1 0 (-i)yG
with W = [Wb] and As = {iSGT 0 }

where As Hermitean, but contains H inverse

problem: have to invert As to perform H average !



Crucial Trick

Fourier transform in W space ! — Yields
exp(—ikn WTA;W)
i _ i _
~ / d[z] exp (2(WT2 + 21 W)) det?/2 A7 exp (szAS lz>

now use anticommuting variables

det?2A;1 ~ / d[¢] exp <’<TA;1 >
Ak

now H linear in exponent —— supersymmetry applicable !

different role of commuting and anticommuting variables



Supermatrix Model
Hubbard—-Stratonovitch transformation gives
Rs(k) = /d[a] exp ( — rstro? — gstr In3 — éﬂ)
with 2k x 2k or 4k x 4k supermatrix o and r = 4872k?N/v?

E
> = GE®]1N—|——L®ZWW oE=0— 1 Tgp

matrix L is some superspace metrik
Fs apart from details WX~1W, projects onto boson—boson space

— symmetry breaking differs from the one for correlations



Supersymmetric Non—Linear sigma Model

limit N — oo, unfolding by saddlepoint approximation
integrate out “massive” modes

left with integral over “Goldstone” modes Q,
free rotations, coset manifold in superspace

. M i
Rs(k) = /d,u(Q)exp <_:|.Fs) H sdet —#/2 (]18/6 + 7;;:2 QE1L)
c=1

integrate out all remaining anticommuting variables
left with ordinary integrals, two for 8 = 2, four for g =1

— drastically reduced number of integration variables



Similarity and Difference to Case of Correlations

structure of non—linear sigma model very similar to the one in
Verbaarschot, Weidenmiiller, Zirnbauer (1985) for correlation
functions (S, (E1)Scd(E2))

supergroup structure and hyperbolic symmetry (noncompactness)
are the same, coset manifolds

B=2  U(1,1]2)/(U(1[1) x U(1[1))
=1 UOSp(2,2]|4)/(UOSp(2]|2) x UOSp(2(2))
but for different reasons

supersymmetry breaking not the same: imbalance,
different roles for commuting and anticommuting variables

Fo ~ W02t [W

0 ] , projects onto boson—boson space only



Analytical Results versus Numerics



Towards Ericsson Regime for § =2
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Towards Ericsson Regime for =1
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Comparison with Microwave Experiments



... vs Numerics and Experiment for § =1
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Analytical Result vs Experiment for § =1
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Distribution of Cross Sections



Joint Probability Density Needed

cross section  oap(E) = |Sap(E)* = Re?S,(E) + Im2S,,(E)
joint pdf  P(Re S,p,1m S,p) = P(Sap, S2p)
good news: can extend previous calculation into complex plane

bivariate characteristic function  R(k, k*)

distribution  p(0ap(E)) = / d2k R(k, k*) Jo(r/7an(E)|K|)



Characteristic Functions for Microwave Data

1.
R(k.k2)g

0.

/D = 0.234 /b=121



Analytics vs Microwave, Nuclear Cross Section Data
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Transition to the Ericson Regime



Cartoon of the Ericson Transition

isolated overlapping strongly overlapping, Ericson

R

cross section

energy

average resonance width / average mean level spacing = /D



Pedestrian—Type—of Motivation

scattering matrix element as function of energy E something like
A
ab(E) Z E—E —il,)2

cross section is absolute value squared

0ab(E) = |San(E)[?

~ Z |Ar|2
~(E-E)+T2/4

AA
+ 2Re - -
,<Z,/ (E—E +il/2)(E—-E,—il./2)

/D small — only first term relevant — isolated resonances

when I'/D gets larger — second term also becomes relevant
—> resonances start overlapping



Distributions in the Ericson Regime

Ericson (early 1960's): if ['/D very large, many open channels, and
transmission coefficients T, comparable, then

real and imaginary parts of S,,(E) are Gaussian distributed
cross sections o,,(E) are exponentially distributed

heuristic reasoning based on Central-Limit—type—of arguments,
neither analytical derivation nor analytical understanding of the
transition — when does it set in?

finally completely and exactly solved

new universality emerges out of the universal setting of
quantum chaotic/stochastic scattering

Kéhnes, TG (2025)



Sketch of Exact Derivation



Weisskopf Estimate and Transmission Coefficients

Weisskopf estimate relates transmission coefficients to parameter

111
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]| —



Characteristic Function ...

unitary case, characteristic function double integral

oo
KRFy(AX2) (11 200
1 -1

s = 1,2 for real and imaginary part, equally distributed

gr=2/Tc—1, t=/I-1|/(gf +))

M
g+
1 gd + M\

channel factor Fu(ri, X2) =



Generates All Moments

o ., k2n o
RS(k) = Z(il) (2n)|Xs2n
n=0 ’
with  x3 =ReS,, , x> =1ImS,

all moments exist, because scattering matrix is
unitary and thus its elements bounded above



Moments and their Asymptotics

channel factor in the asymptotic limit
fu()\l,)\g) — exp(—7rE(/\1 — /\2))

parameter = =1 /D pops up !

first and second leading terms of moments

(2n)! < 1 )"
nt \2(gs +1)(g +1)n=

grgy —8 —g —3 T(2n+1) 1
(2(g +1)(gy +1)r=z)+t T(n—1) to (E”“)

2n —
Xs =

with x; = ReS,p, xo =Im S,



Distribution of Real and Imaginary Parts of S,,(E)

resummation of characteristic function, then Fourier backtransform

distribution is Gaussian with leading correction

Pilxs) ~ \/E(ga+ + 12)(gb+ 1) oo (_w(gj + 1)(5,—17+ + 1)5X_g>

(1 - <3 —6m(gd +1)(g} +1)=x2

tot gt ot
8.8, — 8 —& —3
+((ga+1g+122§‘> =

)&y 1)) 8(gs +1)(gf +1)n=

)



Distribution Properly Rescaled

rescaling & = v/=xs

Pu(&s) =~ \/ (& +1)ley £1) o, <”(ga+ + ey +1)§§>

(1 + (3 —6m(gs +1) (g +1)&2

gigl —ef —g -3
+(r ++1 ++1 2 4) a op a b >
(m(ga +1)(gy + 1)) S 1) (e 1 )=

[ =

1
= —— asymptotics

pure /D



Distribution of Cross Sections

rescaling o ,5(E) = Z0.p(E)
distribution is exponential with leading correction

(g5 +1)(g + 1)7r8’ab>
2

p(cap) =~ 5 ex <—
((g:a+ +1)(gy +)m+ (g5 8y — 83 — g5 —3)
(1~ (& + 208+ s+ 3 (a5 1)+ D)

value at zero
gle —gf —g -3

o(0) ~ (g;+1)(2gb++1)7f N 2

[ —



Analytical Results

versus Microwave Experiments



Distribution of Scattering Matrix Elements
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Distribution of Cross Sections
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What have we learned ?



Conclusions and Outlook

solved longstanding problem within Heidelberg approach

supersymmetry for distributions of off-diagonal scattering
matrix elements and cross sections

exact results in threefold way: othogonal, unitary, symplectic
full analytical understanding of transition to Ericson regime
transition is fast, quantitatively captured

new universality emerging in a universality

comparison with microwave experiments and nuclear data

Brouwer's equivalence proof Heidelberg—Mexico
implies: now have explicit handle on Mexico approach
for arbitrary channel number

also: condensed matter and wireless communication



Thank You for Your Attention !



Supermathematics and Supersymmetry



Two Kinds of Variables

ki complex commuting variables  z,, p=1,...,k;
ko complex anticommuting variables  (,, p=1,..., k»
(plq = —C4Cp in particular (2 = 0

every function is a finite polynomial, for example for k, = 2

f(C1,() = o+ cii + clo + @1(

complex conjugation ¢, — (5 —> (= —(p

CpCS = _C; Cp

commuting and anticommuting variables commute

z,Cq = Cq2zp and ZPCC’; = C;zp



Linear Algebra in Superspace

z .
supervectors Y = L] and supermatrices o = [

matrices a, b have commuting entries
matrices i, v have anticommuting entries

la pllz] _laz+pcl 2],
o=l 8 - B - [

supertrace stro=tra—trb — stroiop = stroso;

det(a — pub~tv)
det b
—— sdetojop = sdet o sdet oy

superdeterminant sdeto =



Analysis in Superspace

8 *
derivative a—c‘;: pg and (3?; =0
Berezin integral /d< =0 and /{ d¢, = L
p= paor = s

for example

* * * * a
/exp(—anCp)ded(p = / (1 — anCp) d¢,d¢, = o
apart from factors, derivative and integral are the same !

change of variables ¢ — x = x(¥) requires

Jacobian or Berezinian /f(¢)d[1/}] = /f(w(x))sdet gqid[x]



Gaussian Integrals over Supervectors

matrix a has commuting entries

2T
[ ewl(=ciac)dic) = det -

/exp(—zTaz)d[z] —det~12  and

o is a supermatrix

g

[ ep(=vlou)dlu] = sdet 1 -
2
— divergencies removed —  renormalization

— Random Matrix Theory and disordered systems



Symplectic Symmetry



New Theoretical Challenge

two time—reversal invariant classes

@ with (total) spin—rotation symmetry:
S unitary symmetric, H real symmetric, § =1
@ no spin—rotation symmetry:

S unitary self-dual, H Hermitean self-dual, 5 = 4

B = 4 for mathematical reasons called symplectic case
the physical system must involve spin degrees of freedom
Kramers degeneracy of eigenvalues, typically doubly degenerate

Hamiltonian H from Gaussian Symplectic Ensemble (GSE)



New Experiments, New Realizations

long time thought to be a mathematical curiosity of only minor
physics relevance, this changes rapidly !

e Kuemmeth, Bolotin, Shi, Ralph (2008)
Gold nanoparticles, level statistics is GSE due to strong
spin—orbit coupling
e Joyner, Miiller, Sieber (2014)
graph has GSE statistics, no spin, rather equivalent geometry
@ microwave experiments (2014-2023)

o Kuhl/Stéckmann group (Nice/Marburg)
o Dietz group (Lanzhou, Daejeon)
o Sirko group (Warsaw)



Where is the Spin in the GSE ?

GSE generated by GUE matrices Hp and 7 rotated Hg
coupled by matrices V, —V*

\Ho H;/

Hy V \ at 1 af o
~V* H;

be HO\

J A

also: every channel gets two spin directions a T, a |

every (!) matrix element is a 2 x 2 quaternion (Pauli matrices)

SaTbT(E) SaTbi( E):|

one scattering matrix element S,,(E) = [5 (E) Saoi(E)
albt albl



Exact Results and Data Comparisons



Supersymmetric Non—Linear sigma Model

calculation more involved than for g = 1,2, result similar

close structural similarity to 8 = 1, 8 x 8 supermatrices,
integral over “Goldstone” modes Q, coset manifold in superspace,
two versions of UOSp(2,2]4)/UOSp(2]2) ® UOSp(2|2)

. M .
Ry(K) = /d,u,(Q)eXp (—L’lFs> [T sdet ~2(15 + — Qz'L)
c=1

integrate out all remaining anticommuting variables,
left with three ordinary integrals for 5 =4

— drastically reduced number of integration variables

Gluth, TG (2025)



Exact Results vs RMT Monte Carlo Simulation
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Exact Results vs Quantum Graph Calculation
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