

L^∞ norm of chaotic eigenfunctions

Maxime Ingremeau

Institut Fourier, Université Grenoble-Alpes

Joint works with Martin Vogel (Strasbourg) and Yann Chaubet (Nantes)

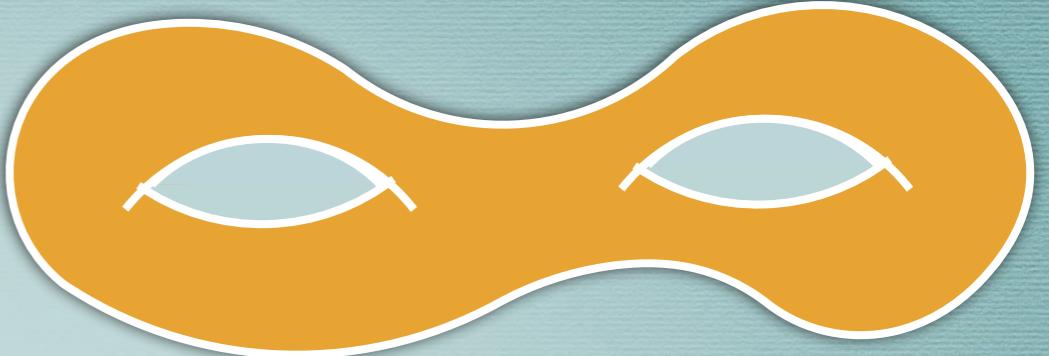
I. Introduction to Quantum Chaos

Quantum chaos

(X, g) compact manifold, or domain in \mathbb{R}^d .

(ψ_j) orthonormal basis of $L^2(X)$ made of eigenfunctions
of the Laplacian:

$$-\Delta\psi_j = \lambda_j\psi_j.$$



Quantum chaos

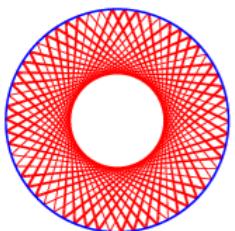
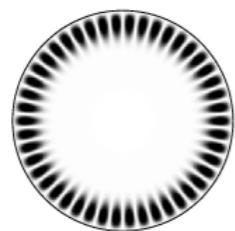
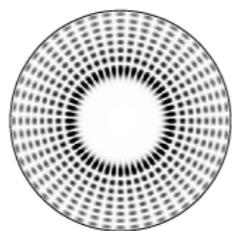
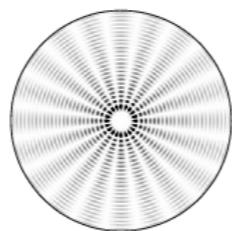
(X, g) compact manifold, or domain in \mathbb{R}^d .

(ψ_j) orthonormal basis of $L^2(X)$ made of eigenfunctions of the Laplacian:

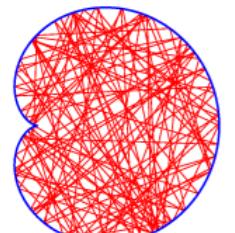
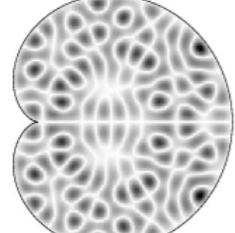
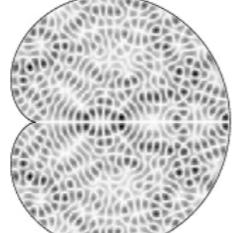
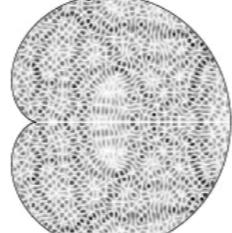
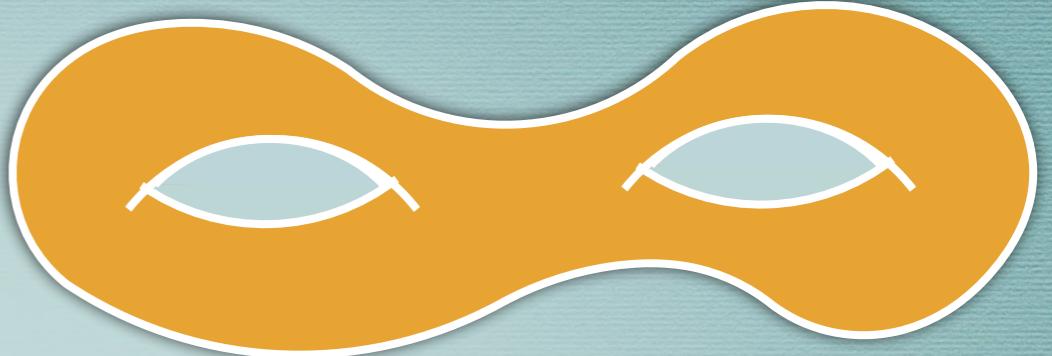
$$-\Delta\psi_j = \lambda_j\psi_j.$$

$n = 100$ $n = 1000$ $n = 1500$ $n = 2000$

Regular billiard



Chaotic billiard



Quantum chaos

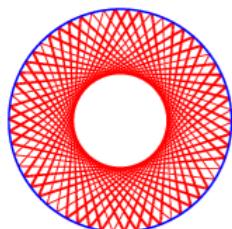
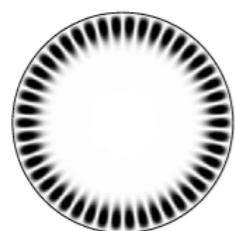
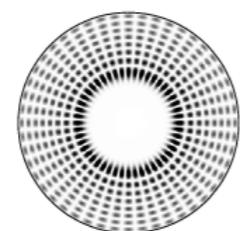
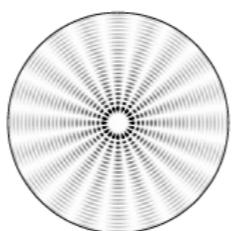
(X, g) compact manifold, or domain in \mathbb{R}^d .

(ψ_j) orthonormal basis of $L^2(X)$ made of eigenfunctions of the Laplacian:

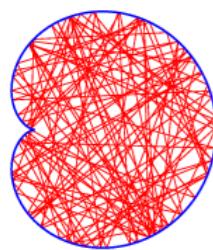
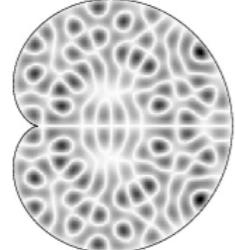
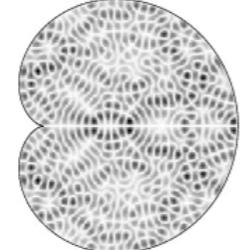
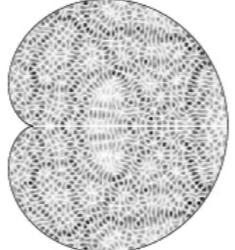
$$-\Delta\psi_j = \lambda_j\psi_j.$$

$n = 100 \quad n = 1000 \quad n = 1500 \quad n = 2000$

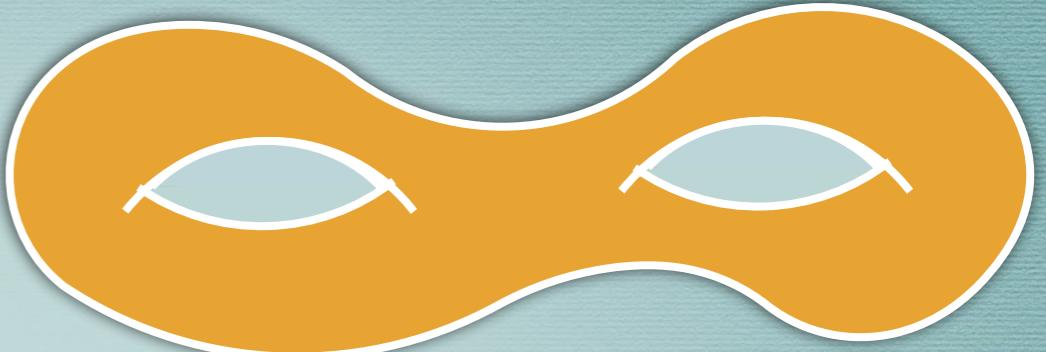
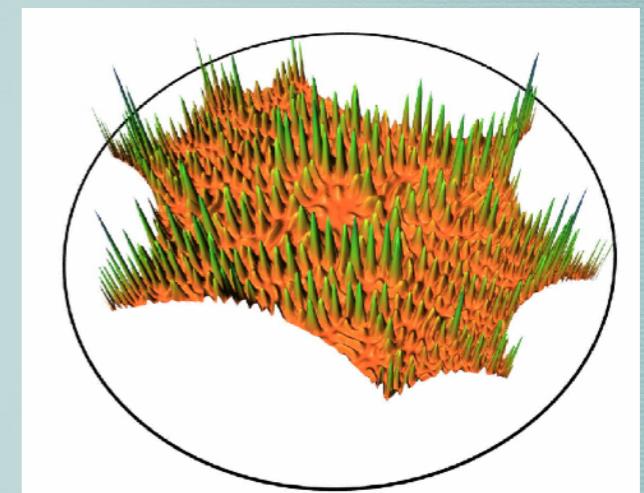
Regular billiard



Chaotic billiard



Picture taken from A. Backer, 2007



Eigenfunction on a hyperbolic surface (Aurich-Steiner 1992)



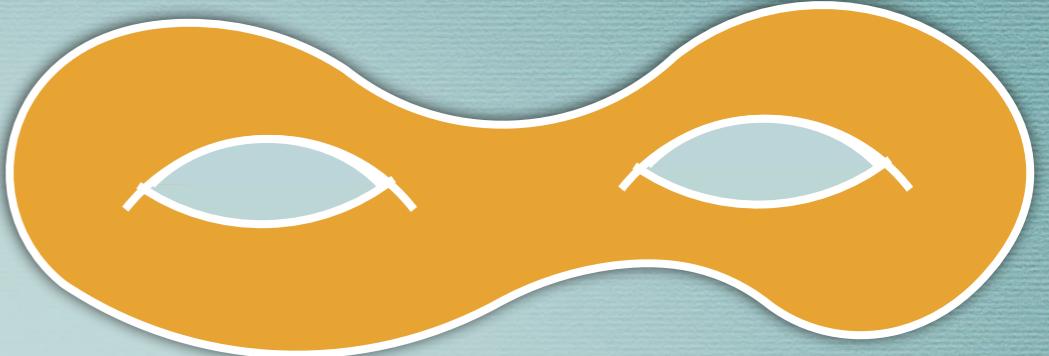
Spherical harmonic

Quantum chaos

(X, g) compact manifold of negative sectional curvature.

(ψ_j) orthonormal basis of $L^2(X)$ made of eigenfunctions of the Laplacian:

$$-\Delta\psi_j = \lambda_j\psi_j.$$



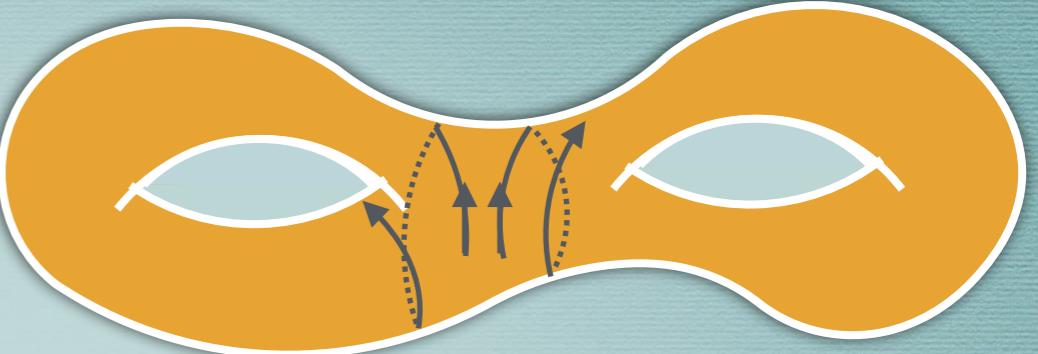
Quantum chaos

(X, g) compact manifold of negative sectional curvature.

(ψ_j) orthonormal basis of $L^2(X)$ made of eigenfunctions of the Laplacian:

$$-\Delta\psi_j = \lambda_j\psi_j.$$

The geodesic flow is chaotic



Quantum chaos

(X, g) compact manifold of negative sectional curvature.

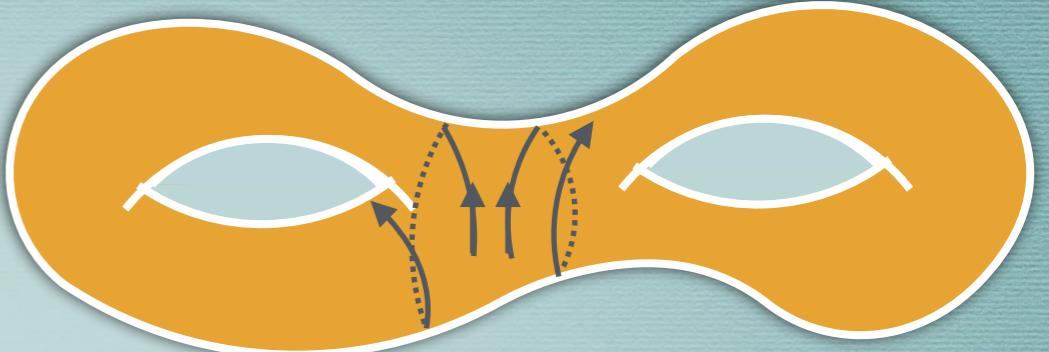
(ψ_j) orthonormal basis of $L^2(X)$ made of eigenfunctions of the Laplacian:

$$-\Delta\psi_j = \lambda_j\psi_j.$$

The geodesic flow is chaotic

The eigenfunctions ψ_j should equidistribute when $j \rightarrow \infty$.

- $|\psi_j(x)|^2 dx$ should converge weakly to the uniform measure (Quantum Unique Ergodicity conjecture)



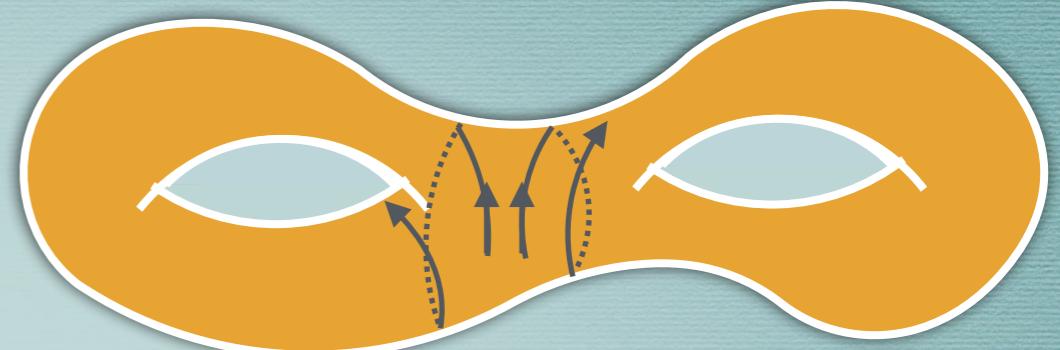
Quantum chaos

(X, g) compact manifold of negative sectional curvature.

(ψ_j) orthonormal basis of $L^2(X)$ made of eigenfunctions of the Laplacian:

$$-\Delta\psi_j = \lambda_j\psi_j.$$

The geodesic flow is chaotic



The eigenfunctions ψ_j should equidistribute when $j \rightarrow \infty$.

- $|\psi_j(x)|^2 dx$ should converge weakly to the uniform measure (Quantum Unique Ergodicity conjecture)
Quantum Ergodicity theorem : Schnirelman, Zelditch, Colin de Verdière (70's, 80's)
Recent advances towards QUE : Anantharaman-Nonnenmacher '05, Dyatlov-Jin-Nonnenmacher '22

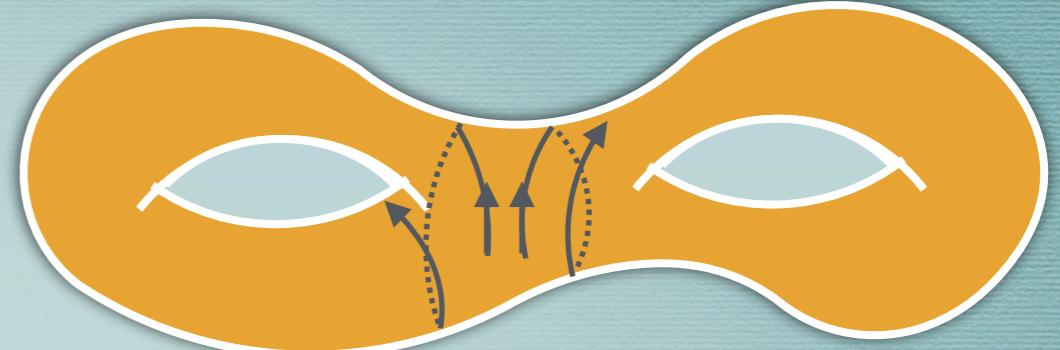
Quantum chaos

(X, g) compact manifold of negative sectional curvature.

(ψ_j) orthonormal basis of $L^2(X)$ made of eigenfunctions of the Laplacian:

$$-\Delta\psi_j = \lambda_j\psi_j.$$

The geodesic flow is chaotic



The eigenfunctions ψ_j should equidistribute when $j \rightarrow \infty$.

- $|\psi_j(x)|^2 dx$ should converge weakly to the uniform measure (Quantum Unique Ergodicity conjecture)
Quantum Ergodicity theorem : Schnirelman, Zelditch, Colin de Verdière (70's, 80's)
Recent advances towards QUE : Anantharaman-Nonnenmacher '05, Dyatlov-Jin-Nonnenmacher '22
- $\|\psi_j\|_{L^\infty}$ should not be too large.

II. L^∞ norms of eigenfunctions

II. L^∞ norms of eigenfunctions

1) Previous bounds on L^∞ norms of eigenfunctions

Existing results on L^∞ norms of eigenfunctions (1)

Theorem (*Avakumovic, Hörmander, Levitan '50-'60*) :
(X, g) compact Riemannian manifold:

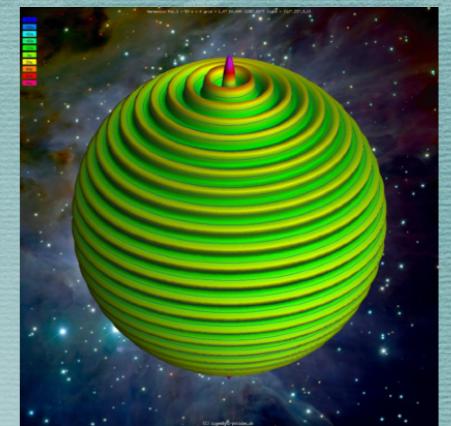
$$(-\Delta\psi = \lambda\psi) \implies \|\psi\|_{L^\infty} \leq C\lambda^{\frac{d-1}{4}}\|\psi\|_{L^2}.$$

Existing results on L^∞ norms of eigenfunctions (1)

Theorem (Avakumovic, Hörmander, Levitan '50-'60) :

(X, g) compact Riemannian manifold:

$$(-\Delta\psi = \lambda\psi) \implies \|\psi\|_{L^\infty} \leq C\lambda^{\frac{d-1}{4}}\|\psi\|_{L^2}.$$

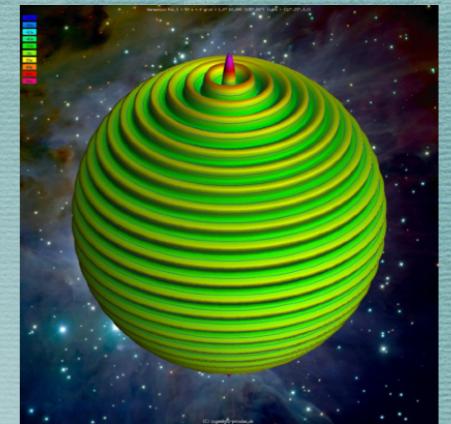


Existing results on L^∞ norms of eigenfunctions (1)

Theorem (Avakumovic, Hörmander, Levitan '50-'60) :

(X, g) compact Riemannian manifold:

$$(-\Delta\psi = \lambda\psi) \implies \|\psi\|_{L^\infty} \leq C\lambda^{\frac{d-1}{4}}\|\psi\|_{L^2}.$$



Conjecture (Sarnak '95):

(X, g) **hyperbolic surface**:

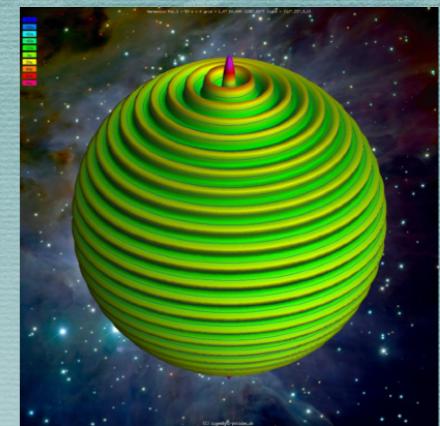
$$\|\psi\|_{L^\infty} \leq C_\varepsilon \lambda^\varepsilon \|\psi\|_{L^2} \quad \forall \varepsilon > 0.$$

Existing results on L^∞ norms of eigenfunctions (1)

Theorem (Avakumovic, Hörmander, Levitan '50-'60) :

(X, g) compact Riemannian manifold:

$$(-\Delta\psi = \lambda\psi) \implies \|\psi\|_{L^\infty} \leq C\lambda^{\frac{d-1}{4}}\|\psi\|_{L^2}.$$



Conjecture (Sarnak '95):

(X, g) **hyperbolic surface**:

$$\|\psi\|_{L^\infty} \leq C_\varepsilon \lambda^\varepsilon \|\psi\|_{L^2} \quad \forall \varepsilon > 0.$$

Theorem (Bérard '77) :

(X, g) compact Riemannian manifold **of negative curvature**:

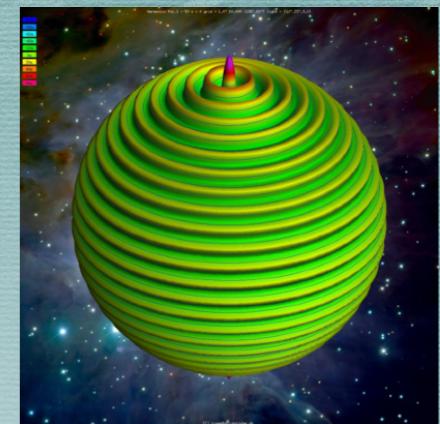
$$(-\Delta\psi = \lambda\psi) \implies \|\psi\|_{L^\infty} \leq C \frac{\lambda^{\frac{d-1}{4}}}{\sqrt{\log \lambda}} \|\psi\|_{L^2}.$$

Existing results on L^∞ norms of eigenfunctions (1)

Theorem (Avakumovic, Hörmander, Levitan '50-'60) :

(X, g) compact Riemannian manifold:

$$(-\Delta\psi = \lambda\psi) \implies \|\psi\|_{L^\infty} \leq C\lambda^{\frac{d-1}{4}}\|\psi\|_{L^2}.$$



Conjecture (Sarnak '95):

(X, g) **hyperbolic surface**:

$$\|\psi\|_{L^\infty} \leq C_\varepsilon \lambda^\varepsilon \|\psi\|_{L^2} \quad \forall \varepsilon > 0.$$

Theorem (Bérard '77) :

(X, g) compact Riemannian manifold **of negative curvature**:

$$(-\Delta\psi = \lambda\psi) \implies \|\psi\|_{L^\infty} \leq C \frac{\lambda^{\frac{d-1}{4}}}{\sqrt{\log \lambda}} \|\psi\|_{L^2}.$$

Theorem (Iwaniec-Sarnak '95) :

(X, g) arithmetic hyperbolic surface, for arithmetic eigenfunctions :

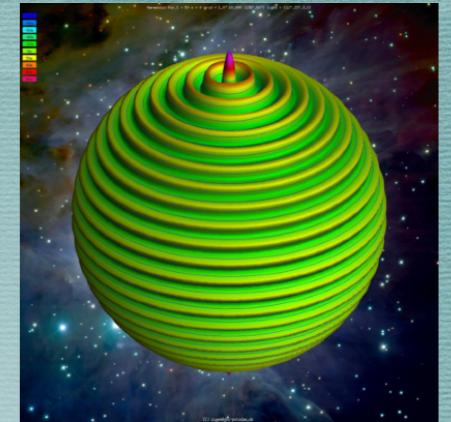
$$\|\psi\|_{L^\infty} \leq C_\varepsilon \lambda^{\frac{5}{24}+\varepsilon} \|\psi\|_{L^2}$$

Existing results on L^∞ norms of eigenfunctions (1)

Theorem (Avakumovic, Hörmander, Levitan '50-'60) :

(X, g) compact Riemannian manifold:

$$(-\Delta\psi = \lambda\psi) \implies \|\psi\|_{L^\infty} \leq C\lambda^{\frac{d-1}{4}}\|\psi\|_{L^2}.$$



Conjecture (Sarnak '95):

(X, g) **hyperbolic surface**:

$$\|\psi\|_{L^\infty} \leq C_\varepsilon \lambda^\varepsilon \|\psi\|_{L^2} \quad \forall \varepsilon > 0.$$

Theorem (Bérard '77) :

(X, g) compact Riemannian manifold **of negative curvature**:

$$(-\Delta\psi = \lambda\psi) \implies \|\psi\|_{L^\infty} \leq C \frac{\lambda^{\frac{d-1}{4}}}{\sqrt{\log \lambda}} \|\psi\|_{L^2}.$$

Recent generalizations to other L^p norms and other manifolds: Hassell-Tacy '15, Hezari-Rivièvre '16, Bonthonneau '17, Blair-Sogge '19, Canzani-Galkowski '23...

Theorem (Iwaniec-Sarnak '95) :

(X, g) arithmetic hyperbolic surface, for arithmetic eigenfunctions :

$$\|\psi\|_{L^\infty} \leq C_\varepsilon \lambda^{\frac{5}{24}+\varepsilon} \|\psi\|_{L^2}$$

Existing lower bounds on L^∞ norms of eigenfunctions

Theorem (*Bérard* '77) :

(X, g) compact Riemannian manifold **of negative curvature**:

$$(-h^2 \Delta \psi_h = \psi_h) \implies \|\psi_h\|_{L^\infty} \leq C \frac{h^{\frac{1-d}{2}}}{\sqrt{|\log h|}} \|\psi_h\|_{L^2}.$$

Conjecture (*Sarnak* '95): (X, g) **hyperbolic surface**:

$$\|\psi_h\|_{L^\infty} \leq C_\varepsilon h^{-\varepsilon} \|\psi_h\|_{L^2} \quad \forall \varepsilon > 0.$$

Existing lower bounds on L^∞ norms of eigenfunctions

Theorem (*Bérard* '77) :

(X, g) compact Riemannian manifold **of negative curvature**:

$$(-h^2 \Delta \psi_h = \psi_h) \implies \|\psi_h\|_{L^\infty} \leq C \frac{h^{\frac{1-d}{2}}}{\sqrt{|\log h|}} \|\psi_h\|_{L^2}.$$

Conjecture (*Sarnak* '95): (X, g) **hyperbolic surface**:

$$\|\psi_h\|_{L^\infty} \leq C_\varepsilon h^{-\varepsilon} \|\psi_h\|_{L^2} \quad \forall \varepsilon > 0.$$

Theorem (*Rudnick-Sarnak* '94, *Milicevic* '10, '11):

For special families of eigenfunctions in negative curvature, we can have:

- If $d = 3$, $\|\psi_h\|_{L^\infty} \geq ch^{-\frac{1}{2}} \|\psi_h\|_{L^2}$.
- If $d = 2$, $\|\psi_h\|_{L^\infty}$ grows more slowly than any power of h^{-1} , but more rapidly than any power of $|\log h|$.

Existing lower bounds on L^∞ norms of eigenfunctions

Theorem (Bérard '77) :

(X, g) compact Riemannian manifold **of negative curvature**:

$$(-h^2 \Delta \psi_h = \psi_h) \implies \|\psi_h\|_{L^\infty} \leq C \frac{h^{\frac{1-d}{2}}}{\sqrt{|\log h|}} \|\psi_h\|_{L^2}.$$

Conjecture (Sarnak '95): (X, g) **hyperbolic surface**:

$$\|\psi_h\|_{L^\infty} \leq C_\varepsilon h^{-\varepsilon} \|\psi_h\|_{L^2} \quad \forall \varepsilon > 0.$$

Theorem (Rudnick-Sarnak '94, Milicevic '10, '11):

For special families of eigenfunctions in negative curvature, we can have:

- If $d = 3$, $\|\psi_h\|_{L^\infty} \geq ch^{-\frac{1}{2}} \|\psi_h\|_{L^2}$.
- If $d = 2$, $\|\psi_h\|_{L^\infty}$ grows more slowly than any power of h^{-1} , but more rapidly than any power of $|\log h|$.

It is not clear what to conjecture about $\|\psi_h\|_{L^\infty}$ when $d \geq 3$ or in variable curvature...

Existing lower bounds on L^∞ norms of eigenfunctions

Theorem (Bérard '77) :

(X, g) compact Riemannian manifold **of negative curvature**:

$$(-h^2 \Delta \psi_h = \psi_h) \implies \|\psi_h\|_{L^\infty} \leq C \frac{h^{\frac{1-d}{2}}}{\sqrt{|\log h|}} \|\psi_h\|_{L^2}.$$

Conjecture (Sarnak '95): (X, g) **hyperbolic surface**:

$$\|\psi_h\|_{L^\infty} \leq C_\varepsilon h^{-\varepsilon} \|\psi_h\|_{L^2} \quad \forall \varepsilon > 0.$$

Theorem (Rudnick-Sarnak '94, Milicevic '10, '11):

For special families of eigenfunctions in negative curvature, we can have:

- If $d = 3$, $\|\psi_h\|_{L^\infty} \geq ch^{-\frac{1}{2}} \|\psi_h\|_{L^2}$.
- If $d = 2$, $\|\psi_h\|_{L^\infty}$ grows more slowly than any power of h^{-1} , but more rapidly than any power of $|\log h|$.

It is not clear what to conjecture about $\|\psi_h\|_{L^\infty}$ when $d \geq 3$ or in variable curvature...

For the quantum cat map, there exist families of eigenfunctions saturating the analogue of Bérard's bound. (These families don't satisfy quantum unique ergodicity : Faure-Nonnemacher-de Bièvre '02))

3) New results

L^∞ norms of generic eigenfunctions

Theorem (Bérard '77) :

(X, g) compact Riemannian manifold **of negative curvature**:

$$(-h^2 \Delta \psi_h = \psi_h) \implies \|\psi_h\|_{L^\infty} \leq C \frac{h^{\frac{1-d}{2}}}{\sqrt{|\log h|}} \|\psi_h\|_{L^2}.$$

Conjecture (Sarnak '95): (X, g) **hyperbolic surface**:

$$\|\psi_h\|_{L^\infty} \leq C_\varepsilon h^{-\varepsilon} \|\psi_h\|_{L^2} \quad \forall \varepsilon > 0.$$

Theorem (I.-Vogel, '24): (X, g) compact Riemannian manifold of negative curvature. There exists $\gamma > 0$ such that, for small generic perturbations P_h of $-h^2 \Delta$, its eigenfunctions satisfy

$$\|\psi_h\|_{L^\infty} \leq C h^{\frac{1-d}{2} + \gamma} \|\psi_h\|_{L^2}.$$

L^∞ norms of generic eigenfunctions

Theorem (Bérard '77) :

(X, g) compact Riemannian manifold **of negative curvature**:

$$(-h^2 \Delta \psi_h = \psi_h) \implies \|\psi_h\|_{L^\infty} \leq C \frac{h^{\frac{1-d}{2}}}{\sqrt{|\log h|}} \|\psi_h\|_{L^2}.$$

Conjecture (Sarnak '95): (X, g) **hyperbolic surface**:

$$\|\psi_h\|_{L^\infty} \leq C_\varepsilon h^{-\varepsilon} \|\psi_h\|_{L^2} \quad \forall \varepsilon > 0.$$

Theorem (I.-Vogel, '24): (X, g) compact Riemannian manifold of negative curvature. There exists $\gamma > 0$ such that, for small generic perturbations P_h of $-h^2 \Delta$, its eigenfunctions satisfy

$$\|\psi_h\|_{L^\infty} \leq C h^{\frac{1-d}{2} + \gamma} \|\psi_h\|_{L^2}.$$

By choosing well the perturbation, we can get $\gamma = \frac{1}{7} - \varepsilon$ if $d = 2$ and $\gamma = \frac{2}{9} - \varepsilon$ if $d = 3$.

L^∞ norms of generic eigenfunctions

Theorem (Bérard '77) :

(X, g) compact Riemannian manifold **of negative curvature**:

$$(-h^2 \Delta \psi_h = \psi_h) \implies \|\psi_h\|_{L^\infty} \leq C \frac{h^{\frac{1-d}{2}}}{\sqrt{|\log h|}} \|\psi_h\|_{L^2}.$$

Conjecture (Sarnak '95): (X, g) **hyperbolic surface**:

$$\|\psi_h\|_{L^\infty} \leq C_\varepsilon h^{-\varepsilon} \|\psi_h\|_{L^2} \quad \forall \varepsilon > 0.$$

Theorem (I.-Vogel, '24): (X, g) compact Riemannian manifold of negative curvature. There exists $\gamma > 0$ such that, for small generic perturbations P_h of $-h^2 \Delta$, its eigenfunctions satisfy

$$\|\psi_h\|_{L^\infty} \leq C h^{\frac{1-d}{2} + \gamma} \|\psi_h\|_{L^2}.$$

By choosing well the perturbation, we can get $\gamma = \frac{1}{7} - \varepsilon$ if $d = 2$ and $\gamma = \frac{2}{9} - \varepsilon$ if $d = 3$.

Dream: be able to take for P_h a small perturbation of the metric/ add a small potential/consider a typical metric in the moduli space (if $d = 2$), and get to $\gamma = \frac{d-1}{2} - \varepsilon$.

L^∞ norms of generic eigenfunctions (2)

Theorem (I.-Vogel, '24): (X, g) compact Riemannian manifold of negative curvature. There exists $\gamma > 0$ such that, for small generic perturbations P_h of $-h^2\Delta$, its eigenfunctions satisfy

$$\|\psi_h\|_{L^\infty} \leq Ch^{\frac{1-d}{2}+\gamma} \|\psi_h\|_{L^2}.$$

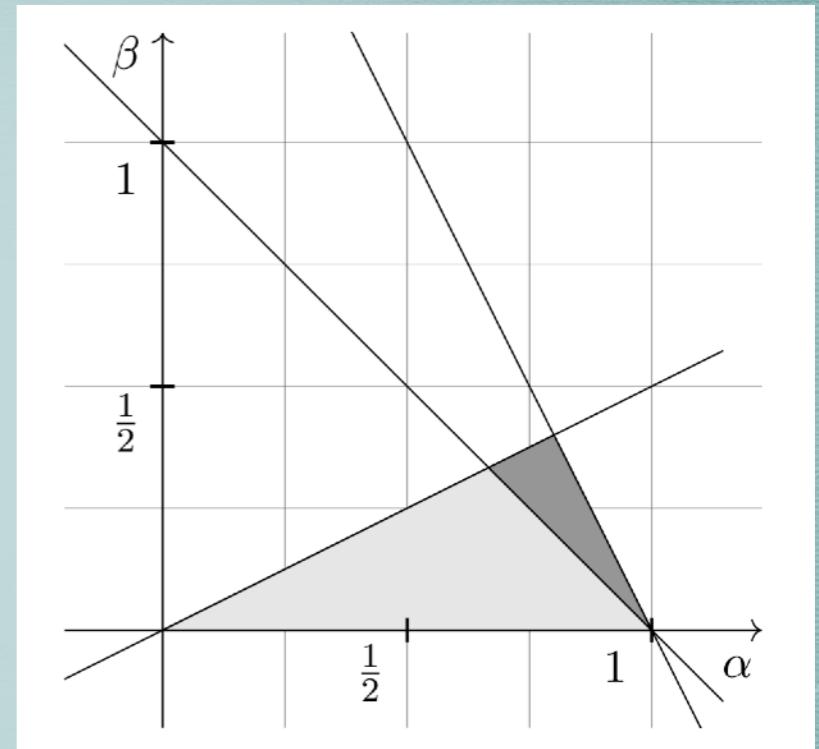
We take $P_h^\omega = -h^2\Delta + h^\alpha \text{Op}_h(q_h^\omega)$, where q_h^ω is a symbol which oscillates and decorrelates at scale h^β , with $0 < \alpha, \beta < 1$ well-chosen.

L^∞ norms of generic eigenfunctions (2)

Theorem (I.-Vogel, '24): (X, g) compact Riemannian manifold of negative curvature. There exists $\gamma > 0$ such that, for small generic perturbations P_h of $-h^2\Delta$, its eigenfunctions satisfy

$$\|\psi_h\|_{L^\infty} \leq Ch^{\frac{1-d}{2}+\gamma} \|\psi_h\|_{L^2}.$$

We take $P_h^\omega = -h^2\Delta + h^\alpha \text{Op}_h(q_h^\omega)$, where q_h^ω is a symbol which oscillates and decorrelates at scale h^β , with $0 < \alpha, \beta < 1$ well-chosen.



We then set $\widetilde{P}_h^\omega := e^{\frac{it}{h}P_h^\omega}(-h^2\Delta)e^{-\frac{it}{h}P_h^\omega}$ for some $t > 0$.

The result says that, with probability $1 - O(h^\infty)$, whenever $\widetilde{P}_h^\omega \psi_h = \lambda \psi_h$ for some $\lambda \in (\frac{1}{2}, 2)$, we have $\|\psi_h\|_{L^\infty} \leq Ch^{\frac{1-d}{2}+\gamma} \|\psi_h\|_{L^2}$.

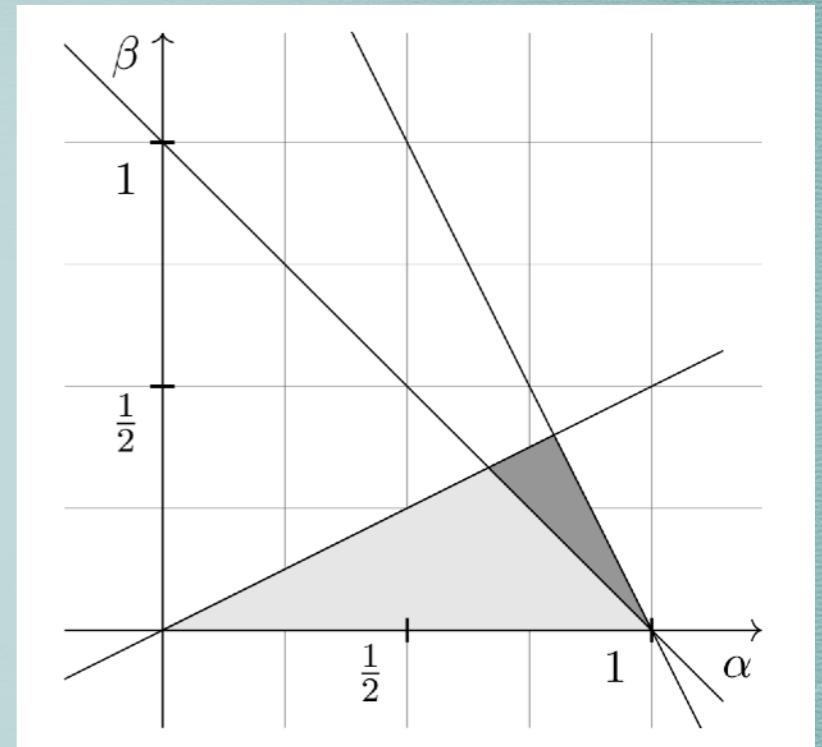
L^∞ norms of generic eigenfunctions (2)

Theorem (I.-Vogel, '24): (X, g) compact Riemannian manifold of negative curvature. There exists $\gamma > 0$ such that, for small generic perturbations P_h of $-h^2\Delta$, its eigenfunctions satisfy

$$\|\psi_h\|_{L^\infty} \leq Ch^{\frac{1-d}{2}+\gamma} \|\psi_h\|_{L^2}.$$

We take $P_h^\omega = -h^2\Delta + h^\alpha \text{Op}_h(q_h^\omega)$, where q_h^ω is a symbol which oscillates and decorrelates at scale h^β , with $0 < \alpha, \beta < 1$ well-chosen.

If $\rho = (x, \xi)$, take $q_h^\omega(\rho) = \sum_{j \in J_h} \omega_j \chi(h^{-\beta} \text{dist}(\rho, \rho_j))$, where $\bigcup_{j \in J_h} \text{supp} \left(\chi(h^{-\beta} \text{dist}(\cdot, \rho_j)) \right)$ is a locally finite cover of T^*X



We then set $\widetilde{P}_h^\omega := e^{\frac{it}{h} P_h^\omega} (-h^2\Delta) e^{-\frac{it}{h} P_h^\omega}$ for some $t > 0$. By Egorov's theorem, $\widetilde{P}_h^\omega = -h^2\Delta + h^\alpha \text{Op}_h(\widetilde{q}_h^\omega)$, where \widetilde{q}_h^ω is a symbol which oscillates at scale h^β .

The result says that, with probability $1 - O(h^\infty)$, whenever $\widetilde{P}_h^\omega \psi_h = \lambda \psi_h$ for some $\lambda \in (\frac{1}{2}, 2)$, we have $\|\psi_h\|_{L^\infty} \leq Ch^{\frac{1-d}{2}+\gamma} \|\psi_h\|_{L^2}$.

The eigenfunctions of $\widetilde{P}_h^\omega \widetilde{\psi}_h = \widetilde{\psi}_h$ are of the form $e^{it\widetilde{P}_h^\omega} \psi_h$, where $-h^2\Delta \psi_h = \psi_h$.

L^∞ norms of deterministic eigenfunctions

Theorem (*Bérard* '77) :

(X, g) compact Riemannian manifold **of negative curvature**:

$$(-h^2 \Delta \psi_h = \psi_h) \implies \|\psi_h\|_{L^\infty} \leq C \frac{h^{\frac{1-d}{2}}}{\sqrt{|\log h|}} \|\psi_h\|_{L^2}.$$

Conjecture (*Sarnak* '95): (X, g) **hyperbolic surface**:

$$\|\psi_h\|_{L^\infty} \leq C_\varepsilon h^{-\varepsilon} \|\psi_h\|_{L^2} \quad \forall \varepsilon > 0.$$

L^∞ norms of deterministic eigenfunctions

Theorem (*Bérard* '77) :

(X, g) compact Riemannian manifold **of negative curvature**:

$$(-h^2 \Delta \psi_h = \psi_h) \implies \|\psi_h\|_{L^\infty} \leq C \frac{h^{\frac{1-d}{2}}}{\sqrt{|\log h|}} \|\psi_h\|_{L^2}.$$

Conjecture (*Sarnak* '95): (X, g) **hyperbolic surface**:

$$\|\psi_h\|_{L^\infty} \leq C_\varepsilon h^{-\varepsilon} \|\psi_h\|_{L^2} \quad \forall \varepsilon > 0.$$

Theorem (*I.-Chabert, work in progress*): (X, g) compact Riemannian manifold of **constant negative curvature**.

$$(-h^2 \Delta \psi_h = \psi_h) \implies \|\psi_h\|_{L^\infty} = o\left(\frac{h^{\frac{1-d}{2}}}{\sqrt{|\log h|}} \|\psi_h\|_{L^2}\right).$$

III. Ideas of proof

How to prove a result in quantum chaos ?

How to prove a result in quantum chaos ?

Approach 1: (*Bourgain, Lindenstrauss, Sarnak...*)

Use the fact that you have an explicit expression for the eigenfunctions, or that they are eigenfunctions of an auxiliary operator.

Works only on the **torus**, or on **arithmetic hyperbolic manifolds**.

How to prove a result in quantum chaos ?

Approach I: (Bourgain, Lindenstrauss, Sarnak...)

Use the fact that you have an explicit expression for the eigenfunctions, or that they are eigenfunctions of an auxiliary operator.

Works only on the **torus**, or on **arithmetic hyperbolic manifolds**.

Approach II: (Berard, Anantharaman, Nonnenmacher, Dyatlov, Jin...)

- 1) Choose a ``basis'' of functions $(f_{h,k})_k$ in which to express the eigenfunctions ψ_h . (For instance, Dirac masses, WKB states, or Gaussian coherent states).
- 2) Understand the evolution of $f_{h,k}$ by some wave equation. For instance, consider the propagator $e^{-i\frac{t}{h}P_h}f_{h,k}$ with $P_h = -h^2\Delta$. Here, one should take t as large as possible.
- 3) Deduce some nice things about the eigenfunctions ψ_h from information on $e^{-i\frac{t}{h}P_h}$.

III. Ideas of proof

1) Bounds on eigenfunctions of generic operators

III. Ideas of proof

1) Bounds on eigenfunctions of generic operators

The eigenfunctions $\widetilde{P}_h^\omega \widetilde{\psi}_h = \widetilde{\psi}_h$ are of the form $e^{i\frac{t}{h}P_h^\omega} \psi_h$, where $-h^2 \Delta \psi_h = \psi_h$.

Here, $P_h^\omega = -h^2 \Delta + h^\alpha \text{Op}_h(q_h^\omega)$, where q_h^ω is a symbol which oscillates and decorrelates at scale h^β , with $0 < \alpha, \beta < 1$ well-chosen.

III. Ideas of proof

1) Bounds on eigenfunctions of generic operators

The eigenfunctions $\widetilde{P}_h^\omega \widetilde{\psi}_h = \widetilde{\psi}_h$ are of the form $e^{i\frac{t}{h}P_h^\omega} \psi_h$, where $-h^2 \Delta \psi_h = \psi_h$.

We only take t bounded in step 2.

No step 3!

Here, $P_h^\omega = -h^2 \Delta + h^\alpha \text{Op}_h(q_h^\omega)$, where q_h^ω is a symbol which oscillates and decorrelates at scale h^β , with $0 < \alpha, \beta < 1$ well-chosen.

- 1) Choose a ``basis'' of functions $(f_{h,k})_k$ in which to express the eigenfunctions ψ_h . (For instance, Dirac masses, WKB states, or Gaussian coherent states).
- 2) Understand the evolution of $f_{h,k}$ by some wave equation. For instance, consider the propagator $e^{-i\frac{t}{h}P_h} f_{h,k}$ with $P_h = -h^2 \Delta$. Here, one should take t as large as possible.
- 3) Deduce some nice things about the eigenfunctions ψ_h from information on $e^{-i\frac{t}{h}P_h}$.

Using Lagrangian states (Step 1.1)

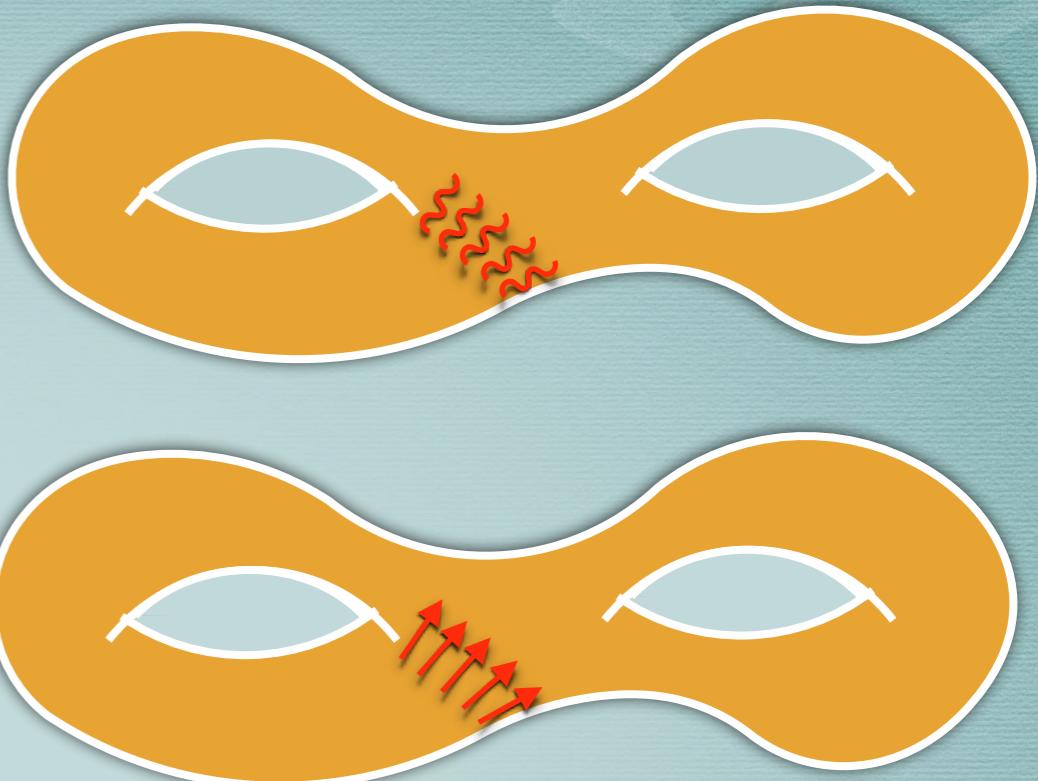
(Monochromatic) Lagrangian states:

$$f_h(x) = a(x) e^{\frac{i}{\hbar} \varphi(x)}, \quad (\text{I})$$

with $|\nabla \varphi| \equiv c$,

$$a \in C_c^\infty(X)$$

f_h is microlocalised on
 $\Lambda_{f_h} = \{(x, \nabla \varphi(x)); x \in \text{support}(a)\} \subset S^*X$



Using Lagrangian states (Step 1.1)

(Monochromatic) Lagrangian states:

$$f_h(x) = a(x) e^{\frac{i}{h} \varphi(x)}, \quad (\text{I})$$

with $|\nabla \varphi| \equiv c$,

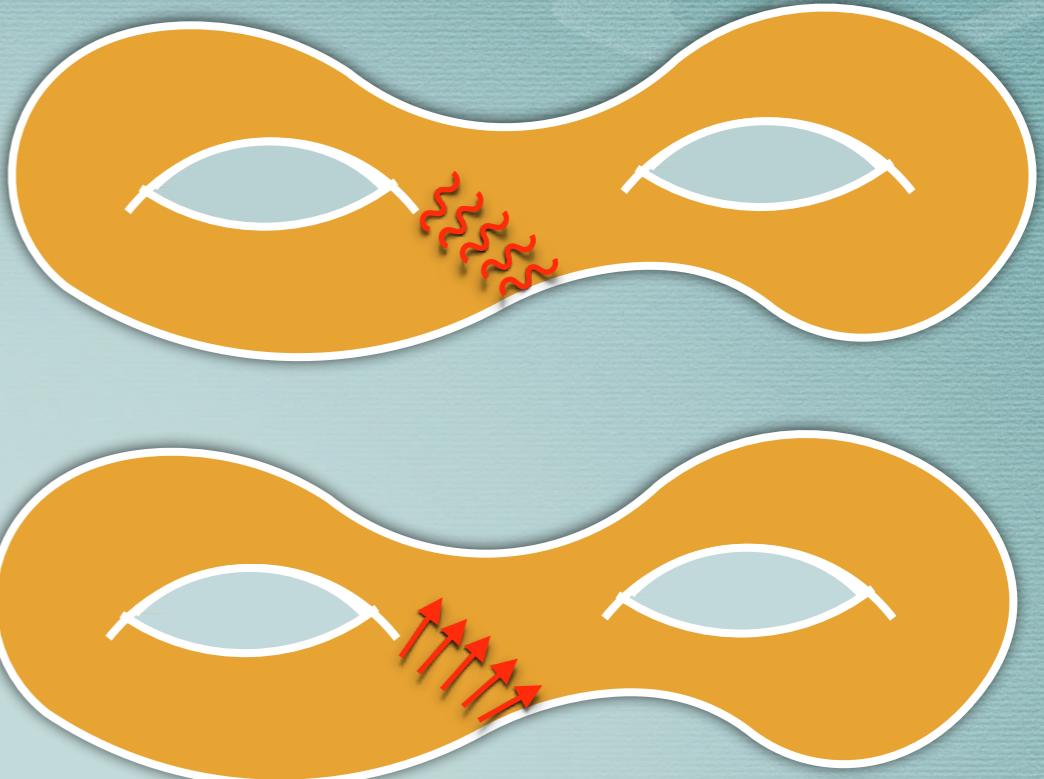
$$a \in C_c^\infty(X)$$

f_h is microlocalised on
 $\Lambda_{f_h} = \{(x, \nabla \varphi(x)); x \in \text{support}(a)\} \subset S^*X$

Fact: if $-h^2 \Delta \psi_h = \psi_h$, then

$$\psi_h = \sum_{k \in K_h} b_k f_{k,h} + O(h^\infty), \text{ where}$$

- Each $f_{h,k}$ is of the form (I), with $\|f_{h,k}\|_{L^2} \approx 1$.
- $|K_h| \approx h^{1-d}$.
- $\|b_k\|_{\ell^2} \approx \|\psi_h\|_{L^2}$.
- The manifolds $\Lambda_{f_{h,k}}$ are separated from ch .



Using Lagrangian states (Step 1.1)

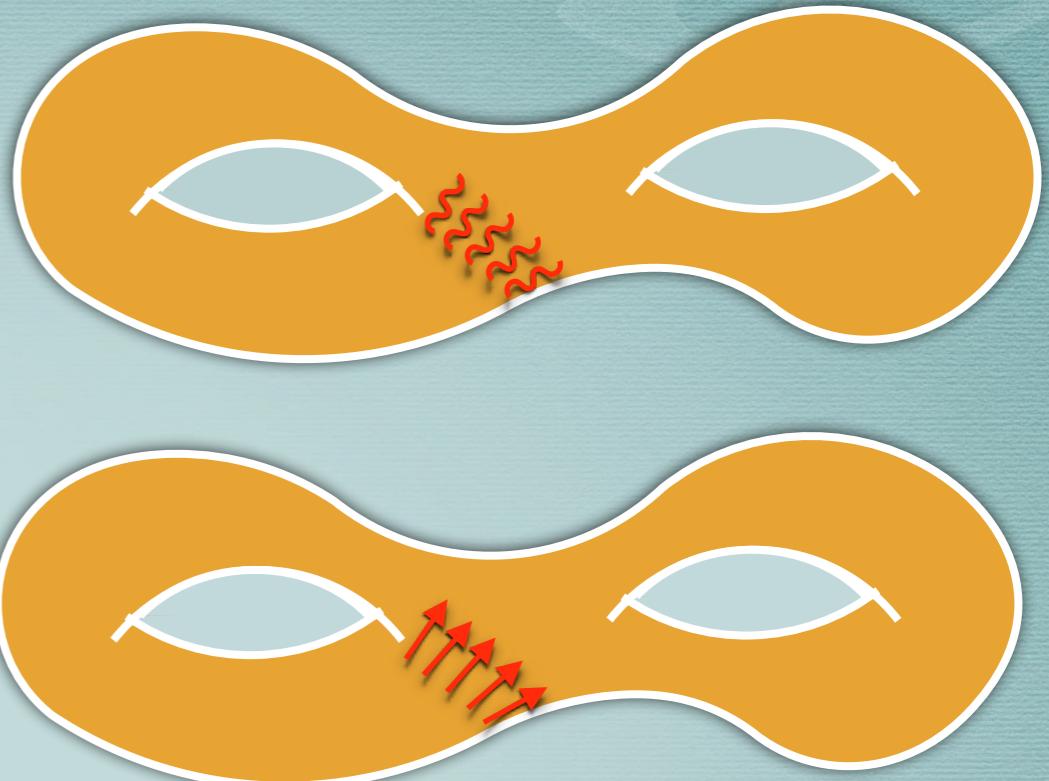
(Monochromatic) Lagrangian states:

$$f_h(x) = a(x) e^{\frac{i}{h} \varphi(x)}, \quad (\text{I})$$

with $|\nabla \varphi| \equiv c$,

$$a \in C_c^\infty(X)$$

f_h is microlocalised on
 $\Lambda_{f_h} = \{(x, \nabla \varphi(x)); x \in \text{support}(a)\} \subset S^*X$



Fact: if $-h^2 \Delta \psi_h = \psi_h$, then

$$\psi_h = \sum_{k \in K_h} b_k f_{k,h} + O(h^\infty), \text{ where}$$

- Each $f_{h,k}$ is of the form (I), with $\|f_{h,k}\|_{L^2} \approx 1$.
- $|K_h| \approx h^{1-d}$.
- $\|b_k\|_{\ell^2} \approx \|\psi_h\|_{L^2}$.
- The manifolds $\Lambda_{f_{h,k}}$ are separated from ch .

Similar to the fact that, on \mathbb{T}^d , if $-\Delta \psi = \lambda^2 \psi$, $\lambda \gg 1$,
and if $\chi \in C_c^\infty(\mathbb{T}^d)$, then you can write

$$\chi \psi = \sum_{\substack{n \in \mathbb{Z}^d \\ |n|^2 \approx \lambda^2}} a_n e^{inx}$$

Using Lagrangian states (Step 1.1)

(Monochromatic) Lagrangian states:

$$f_h(x) = a(x) e^{\frac{i}{h} \varphi(x)}, \quad (\text{I})$$

with $|\nabla \varphi| \equiv c$,

$$a \in C_c^\infty(X)$$

f_h is microlocalised on
 $\Lambda_{f_h} = \{(x, \nabla \varphi(x)); x \in \text{support}(a)\} \subset S^*X$

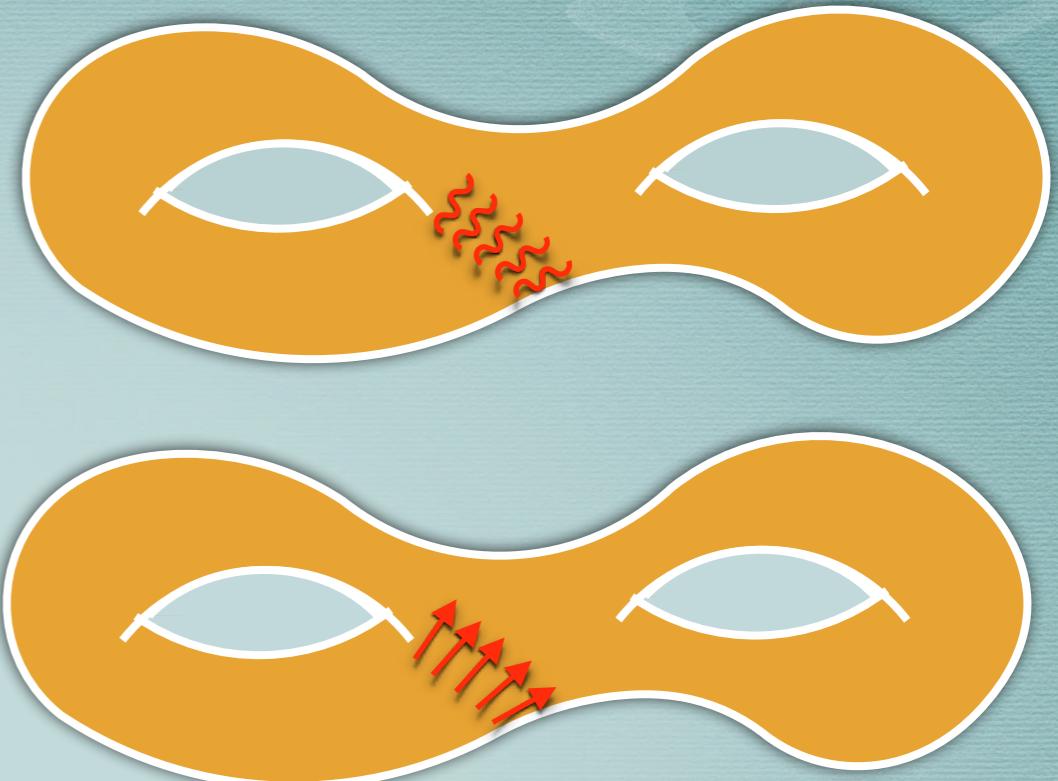
Fact: if $-h^2 \Delta \psi_h = \psi_h$, then

$$\psi_h = \sum_{k \in K_h} b_k f_{k,h} + O(h^\infty), \text{ where}$$

- Each $f_{h,k}$ is of the form (I), with $\|f_{h,k}\|_{L^2} \approx 1$.
- $|K_h| \approx h^{1-d}$.
- $\|b_k\|_{\ell^2} \approx \|\psi_h\|_{L^2}$.
- The manifolds $\Lambda_{f_{h,k}}$ are separated from ch .

Similar to the fact that, on \mathbb{T}^d , if $-\Delta \psi = \lambda^2 \psi$, $\lambda \gg 1$, and if $\chi \in C_c^\infty(\mathbb{T}^d)$, then you can write

$$\chi \psi = \sum_{\substack{n \in \mathbb{Z}^d \\ |n|^2 \approx \lambda^2}} a_n e^{inx}$$



Using this decomposition and Cauchy-Schwarz, we recover $|\psi_h(x)| \leq Ch^{\frac{1-d}{2}}$.

Using Lagrangian states (Step 1.1)

(Monochromatic) Lagrangian states:

$$f_h(x) = a(x) e^{\frac{i}{h} \varphi(x)}, \quad (\text{I})$$

with $|\nabla \varphi| \equiv c$,

$$a \in C_c^\infty(X)$$

f_h is microlocalised on
 $\Lambda_{f_h} = \{(x, \nabla \varphi(x)); x \in \text{support}(a)\} \subset S^*X$

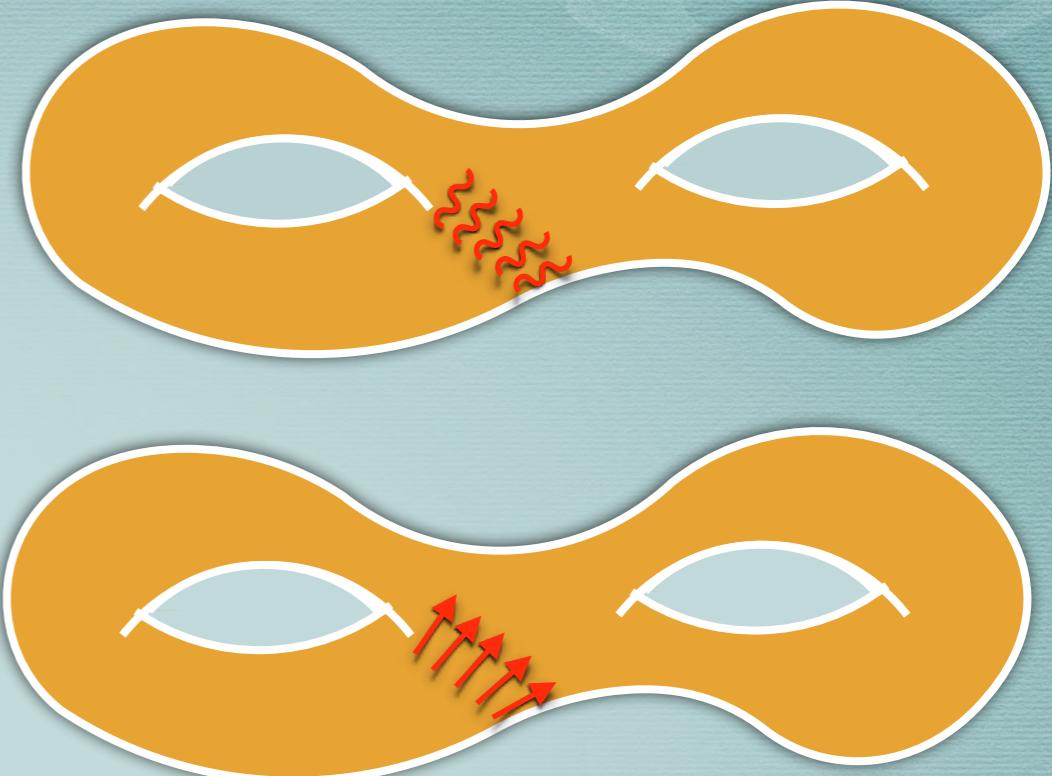
Fact: if $-h^2 \Delta \psi_h = \psi_h$, then

$$\psi_h = \sum_{k \in K_h} b_k f_{k,h} + O(h^\infty), \text{ where}$$

- Each $f_{h,k}$ is of the form (I), with $\|f_{h,k}\|_{L^2} \approx 1$.
- $|K_h| \approx h^{1-d}$.
- $\|b_k\|_{\ell^2} \approx \|\psi_h\|_{L^2}$.
- The manifolds $\Lambda_{f_{h,k}}$ are separated from ch .

Similar to the fact that, on \mathbb{T}^d , if $-\Delta \psi = \lambda^2 \psi$, $\lambda \gg 1$, and if $\chi \in C_c^\infty(\mathbb{T}^d)$, then you can write

$$\chi \psi = \sum_{\substack{n \in \mathbb{Z}^d \\ |n|^2 \approx \lambda^2}} a_n e^{inx}$$



Using this decomposition and Cauchy-Schwarz, we recover $|\psi_h(x)| \leq Ch^{\frac{1-d}{2}}$.

We see that $|\psi_h(x)|$ is large if:

- Most b_k are not too small.
- And the $b_k a_k(x) e^{\frac{i}{h} \varphi_k(x)}$ have similar phases.

Propagating Lagrangian states (Step 2)

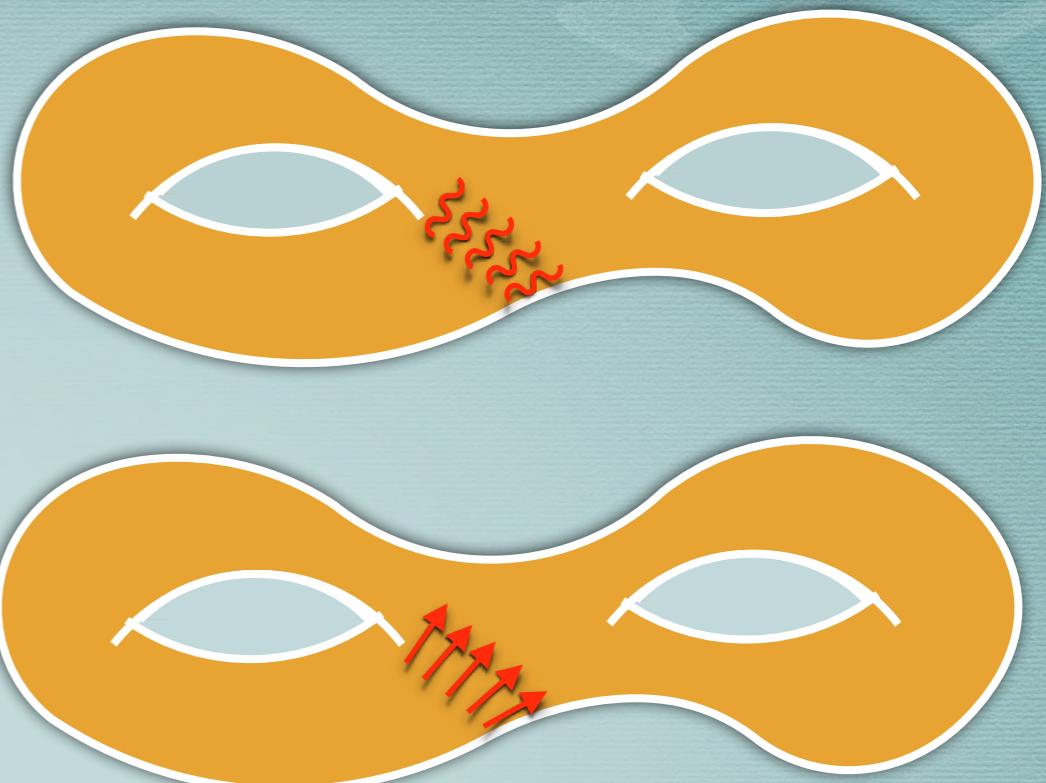
(Monochromatic) Lagrangian states:

$$f_h(x) = a(x) e^{\frac{i}{\hbar} \varphi(x)}, \quad (\text{I})$$

with $|\nabla \varphi| \equiv c$,

$$a \in C_c^\infty(X)$$

f_h is microlocalised on
 $\Lambda_{f_h} = \{(x, \nabla \varphi(x)); x \in \text{support}(a)\} \subset S^*X$



Propagating Lagrangian states (Step 2)

(Monochromatic) Lagrangian states:

$$f_h(x) = a(x) e^{\frac{i}{h} \varphi(x)}, \quad (\text{I})$$

with $|\nabla \varphi| \equiv c$,

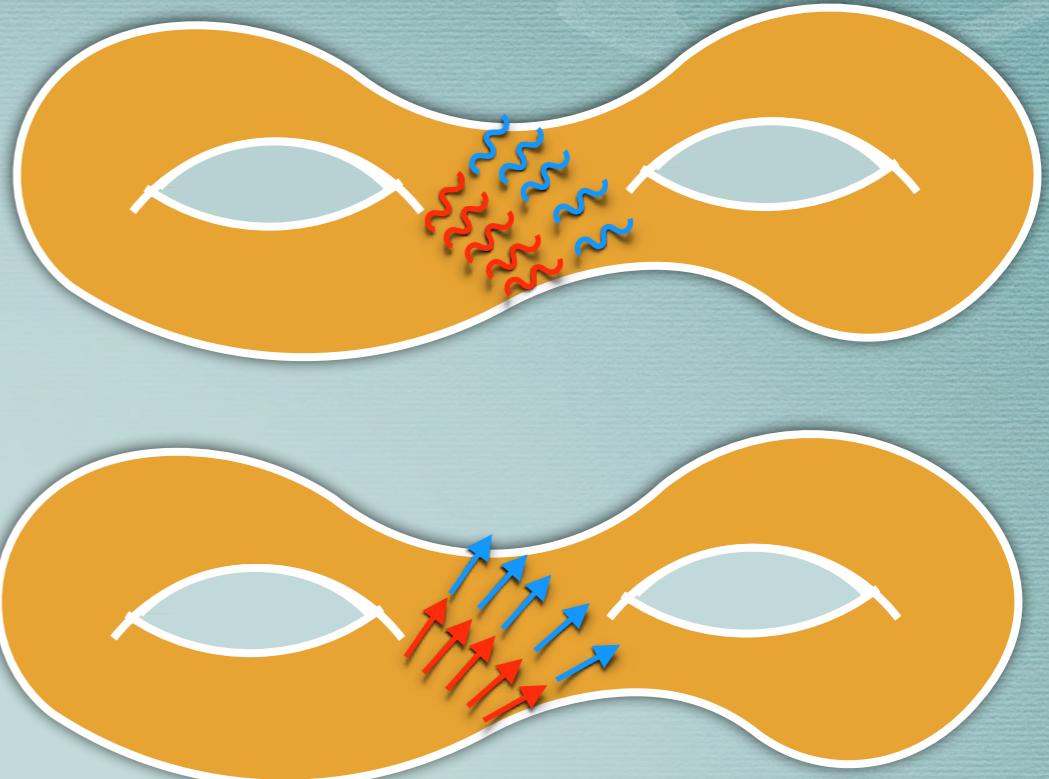
$$a \in C_c^\infty(X)$$

f_h is microlocalised on
 $\Lambda_{f_h} = \{(x, \nabla \varphi(x)); x \in \text{support}(a)\} \subset S^*X$

We have $(e^{ith\Delta} f_h)(x) = a_h(t, x) e^{\frac{i}{h} \varphi_t(x)} + O(h)$,

where

- $\{(x, \nabla \varphi_t)\} = \Phi^t(\Lambda_{f_h})$, where Φ^t is the geodesic flow
- $a_h(t, x)$ satisfies a transport equation



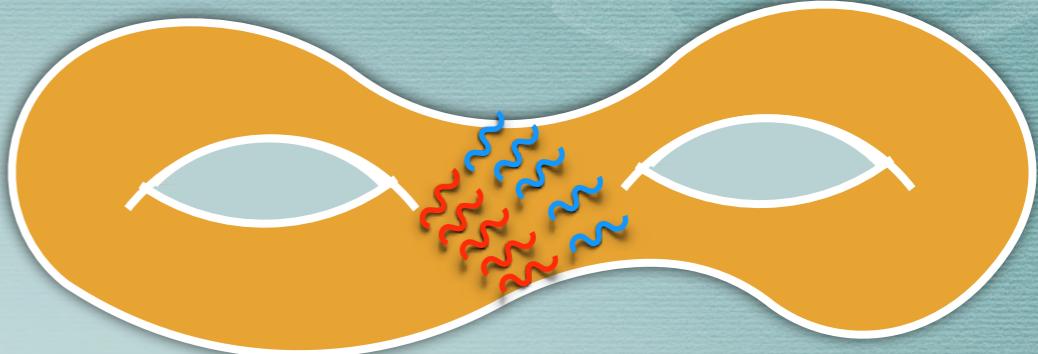
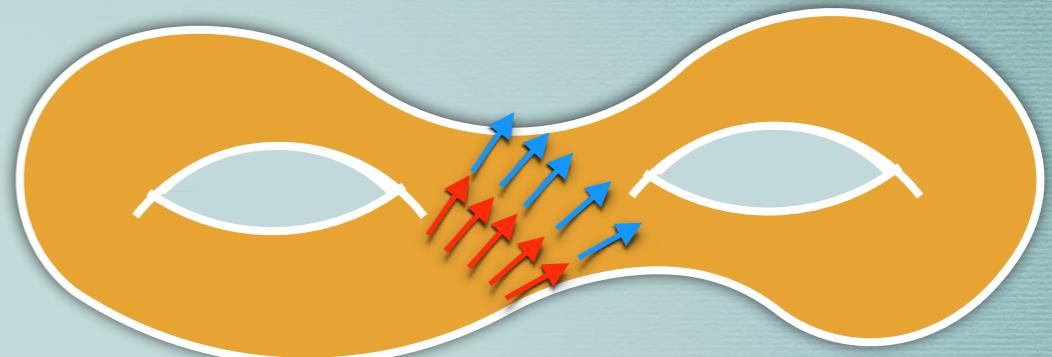
Propagating Lagrangian states (Step 2)

(Monochromatic) Lagrangian states:

$$f_h(x) = a(x) e^{\frac{i}{h} \varphi(x)}, \quad (\text{I})$$

with $|\nabla \varphi| \equiv c$,

$$a \in C_c^\infty(X)$$



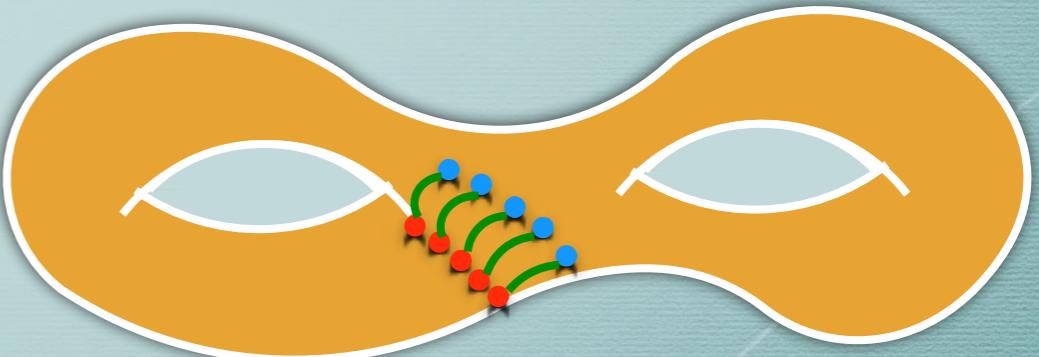
f_h is microlocalised on

$$\Lambda_{f_h} = \{(x, \nabla \varphi(x)); x \in \text{support}(a)\} \subset S^*X$$

We have $(e^{ith\Delta} f_h)(x) = a_h(t, x) e^{\frac{i}{h} \varphi_t(x)} + O(h)$,

$$(e^{-i\frac{t}{h}(-h^2\Delta + h^\alpha \text{Op}_h(q_\omega))} f_h)(x) = e^{i\theta_h^\omega(x, t)} a_h(t, x) e^{\frac{i}{h} \varphi_t(x)} + O(h^{\dots}),$$

where



- $\{(x, \nabla \varphi_t)\} = \Phi^t(\Lambda_{f_h})$, where Φ^t is the geodesic flow
- $a_h(t, x)$ satisfies a transport equation

$$\theta_h^\omega(x, t) = h^{\alpha-1} \int_0^t q_\omega \circ \Phi^s ds$$

Regrouping Lagrangian states (Step 1.2)

$-h^2 \Delta \psi_h = \psi_h$, decomposed as $\psi_h = \sum_{k \in K_h} b_k f_{k,h}$.

Fix $x \in X$, $t > 0$: $(e^{-i\frac{t}{h}P_h^\omega} \psi_h)(x) \approx \sum_{k \in K_h} b_k a_{k,h}(t, x) e^{i\theta_k^\omega(t, x)} e^{\frac{i}{h}\varphi_k(t, x)}$

Regrouping Lagrangian states (Step 1.2)

$-h^2 \Delta \psi_h = \psi_h$, decomposed as $\psi_h = \sum_{k \in K_h} b_k f_{k,h}$.

If the (θ_k^ω) were independent and uniform over $[0, 2\pi)$, we could conclude (and obtain much better bounds).

Fix $x \in X$, $t > 0$: $(e^{-i\frac{t}{h}P_h^\omega} \psi_h)(x) \approx \sum_{k \in K_h} b_k a_{k,h}(t, x) e^{i\theta_k^\omega(t, x)} e^{\frac{i}{h}\varphi_k(t, x)}$

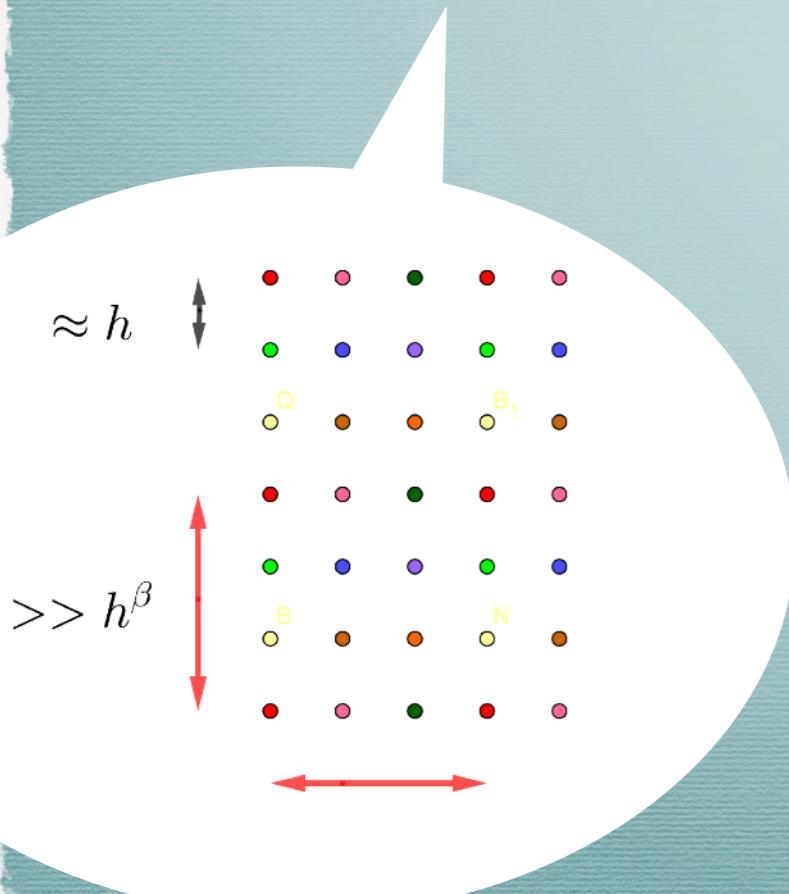
Regrouping Lagrangian states (Step 1.2)

$-h^2 \Delta \psi_h = \psi_h$, decomposed as $\psi_h = \sum_{k \in K_h} b_k f_{k,h}$.

If the (θ_k^ω) were independent and uniform over $[0, 2\pi)$, we could conclude (and obtain much better bounds).

Fix $x \in X$, $t > 0$: $(e^{-i\frac{t}{h}P_h^\omega} \psi_h)(x) \approx \sum_{k \in K_h} b_k a_{k,h}(t, x) e^{i\theta_k^\omega(t, x)} e^{\frac{i}{h}\varphi_k(t, x)}$

Idea: write $\psi_h = \sum_{\iota \in I_h} \sum_{k \in K_{h,\iota}} b_k f_{k,h}$, where
if $k \neq k' \in K_{h,\iota}$, $\text{dist}(\Lambda_{f_{k,h}}, \Lambda_{f_{k',h}}) \gg h^\beta$.



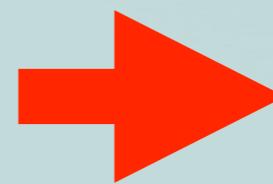
Regrouping Lagrangian states (Step 1.2)

$-h^2 \Delta \psi_h = \psi_h$, decomposed as $\psi_h = \sum_{k \in K_h} b_k f_{k,h}$.

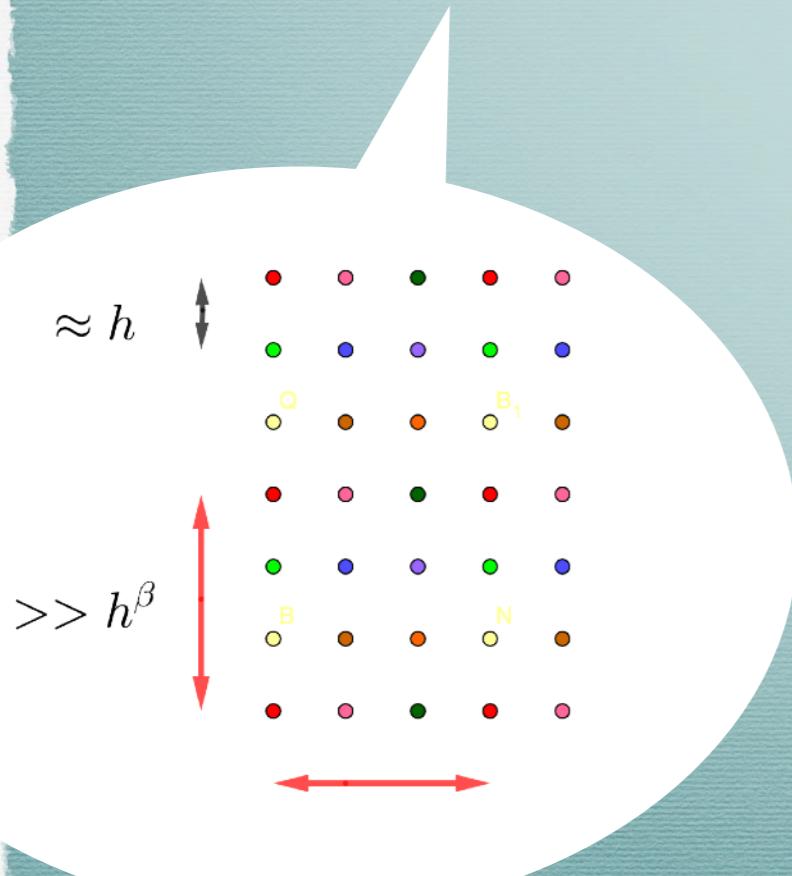
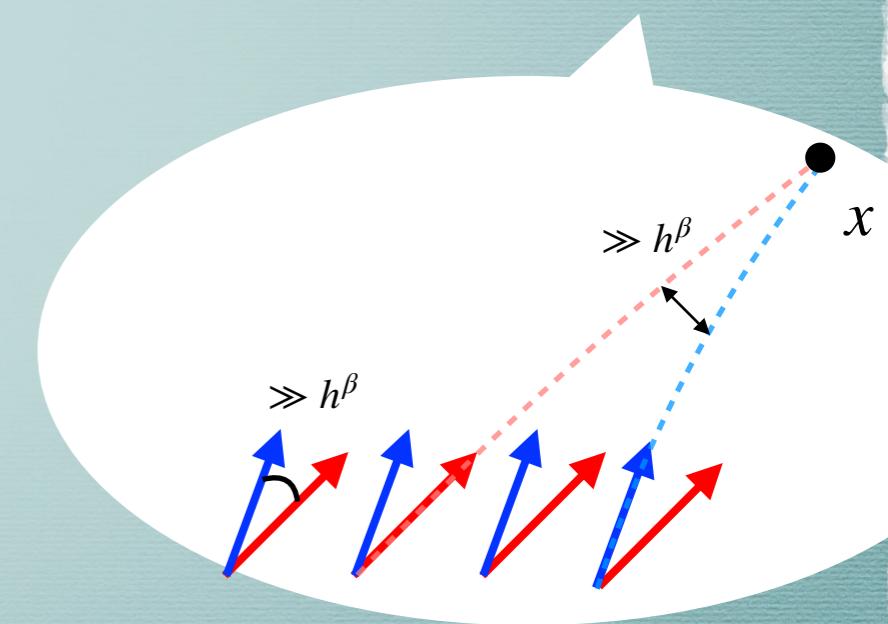
If the (θ_k^ω) were independent and uniform over $[0, 2\pi)$, we could conclude (and obtain much better bounds).

Fix $x \in X$, $t > 0$: $(e^{-i\frac{t}{h}P_h^\omega} \psi_h)(x) \approx \sum_{k \in K_h} b_k a_{k,h}(t, x) e^{i\theta_k^\omega(t, x)} e^{\frac{i}{h}\varphi_k(t, x)}$

Idea: write $\psi_h = \sum_{\iota \in I_h} \sum_{k \in K_{h,\iota}} b_k f_{k,h}$, where
if $k \neq k' \in K_{h,\iota}$, $\text{dist}(\Lambda_{f_{k,h}}, \Lambda_{f_{k',h}}) \gg h^\beta$.



The $(\theta_k^\omega)_{k \in K_{h,\iota}}$ are independent.



Regrouping Lagrangian states (Step 1.2)

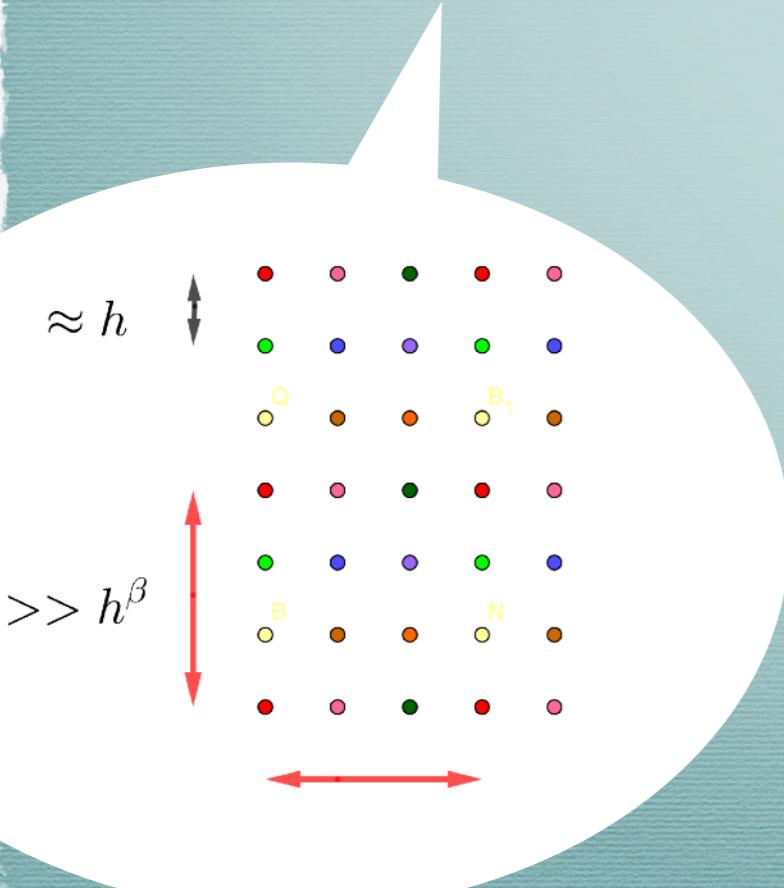
$-h^2 \Delta \psi_h = \psi_h$, decomposed as $\psi_h = \sum_{k \in K_h} b_k f_{k,h}$.

If the (θ_k^ω) were independent and uniform over $[0, 2\pi)$, we could conclude (and obtain much better bounds).

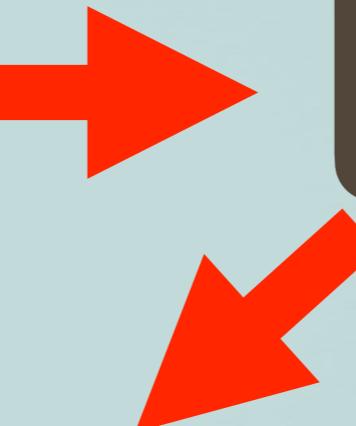
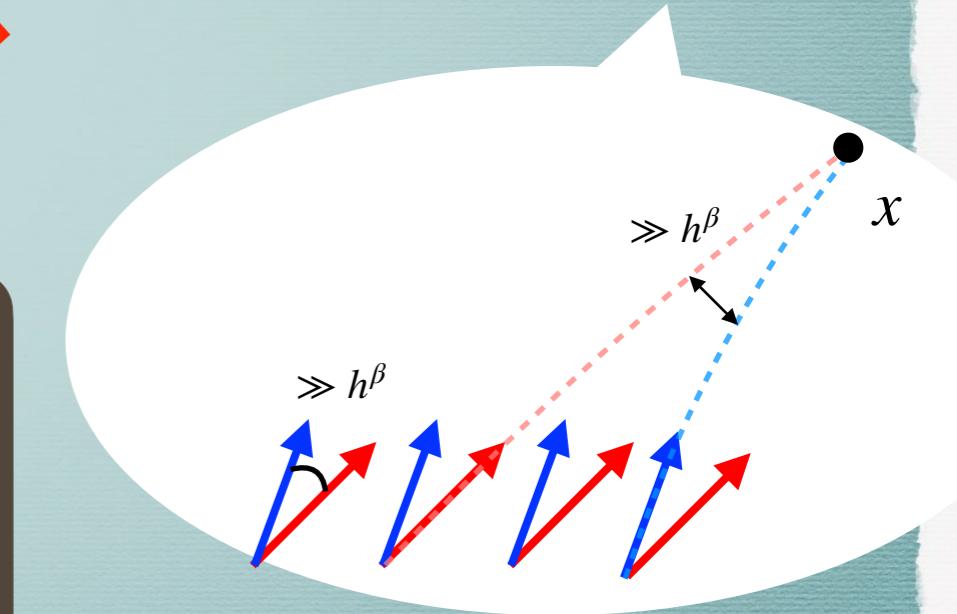
Fix $x \in X$, $t > 0$: $(e^{-i\frac{t}{h}P_h^\omega} \psi_h)(x) \approx \sum_{k \in K_h} b_k a_{k,h}(t, x) e^{i\theta_k^\omega(t, x)} e^{\frac{i}{h}\varphi_k(t, x)}$

Idea: write $\psi_h = \sum_{\iota \in I_h} \sum_{k \in K_{h,\iota}} b_k f_{k,h}$, where
if $k \neq k' \in K_{h,\iota}$, $\text{dist}(\Lambda_{f_{k,h}}, \Lambda_{f_{k',h}}) \gg h^\beta$.

The $(\theta_k^\omega)_{k \in K_{h,\iota}}$ are independent.



With probability $1 - O(h^\infty)$,

$$\left| \sum_{k \in K_{h,\iota}} b_k f_{k,h}(x) \right|^2 \leq h^{-\varepsilon} \sum_{k \in K_{h,\iota}} |b_k|^2.$$


Regrouping Lagrangian states (Step 1.2)

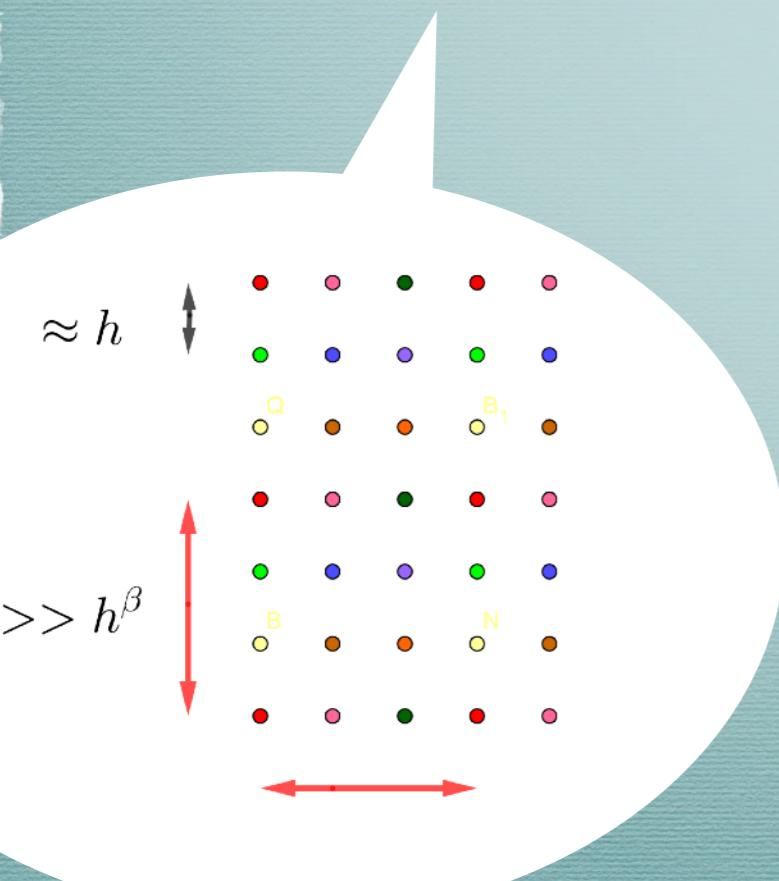
$-h^2 \Delta \psi_h = \psi_h$, decomposed as $\psi_h = \sum_{k \in K_h} b_k f_{k,h}$.

If the (θ_k^ω) were independent and uniform over $[0, 2\pi)$, we could conclude (and obtain much better bounds).

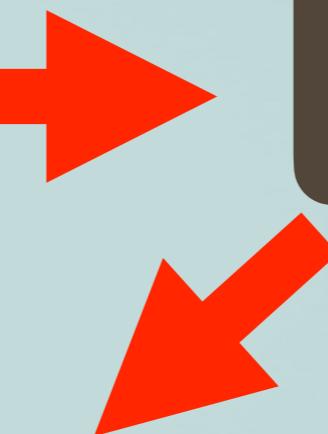
Fix $x \in X$, $t > 0$: $(e^{-i\frac{t}{h}P_h^\omega} \psi_h)(x) \approx \sum_{k \in K_h} b_k a_{k,h}(t, x) e^{i\theta_k^\omega(t, x)} e^{\frac{i}{h}\varphi_k(t, x)}$

Idea: write $\psi_h = \sum_{l \in I_h} \sum_{k \in K_{h,l}} b_k f_{k,h}$, where
if $k \neq k' \in K_{h,l}$, $\text{dist}(\Lambda_{f_{k,h}}, \Lambda_{f_{k',h}}) \gg h^\beta$.

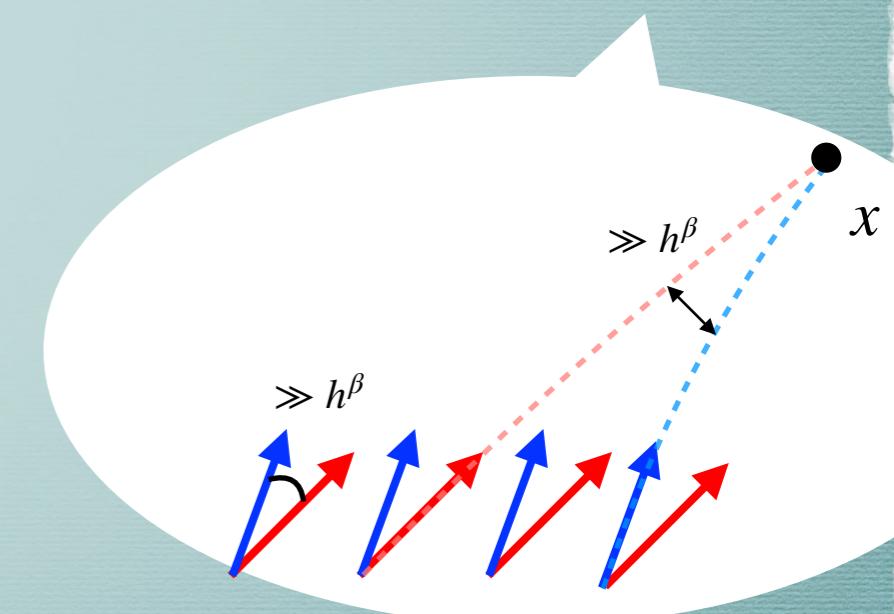
The $(\theta_k^\omega)_{k \in K_{h,l}}$ are independent.



With probability $1 - O(h^\infty)$,

$$\left| \sum_{k \in K_{h,l}} b_k f_{k,h}(x) \right|^2 \leq h^{-\varepsilon} \sum_{k \in K_{h,l}} |b_k|^2.$$


With probability $1 - O(h^\infty)$,

$$|\psi_h(x)| \leq h^{-\varepsilon} \sqrt{|I_h|}.$$


III. Ideas of proof

2) Bounds on deterministic eigenfunctions

- 1) Choose a ``basis'' of functions $(f_{h,k})_k$ in which to express the eigenfunctions ψ_h . (For instance, Dirac masses, WKB states, or Gaussian coherent states).
- 2) Understand the evolution of $f_{h,k}$ by some wave equation. For instance, consider the propagator $e^{-i\frac{t}{h}P_h}f_{h,k}$ with $P_h = -h^2\Delta$. Here, one should take t as large as possible.
- 3) Deduce some nice things about the eigenfunctions ψ_h from information on $e^{-i\frac{t}{h}P_h}$.

III. Ideas of proof

2) Bounds on deterministic eigenfunctions

- 1) Choose a ``basis'' of functions $(f_{h,k})_k$ in which to express the eigenfunctions ψ_h . (For instance, Dirac masses, WKB states, or Gaussian coherent states).
- 2) Understand the evolution of $f_{h,k}$ by some wave equation. For instance, consider the propagator $e^{-i\frac{t}{\hbar}P_h}f_{h,k}$ with $P_h = -\hbar^2\Delta$. Here, one should take t as large as possible.
- 3) Deduce some nice things about the eigenfunctions ψ_h from information on $e^{-i\frac{t}{\hbar}P_h}$.

Step 2 is generally limited by the Ehrenfest time $t \approx |\log \hbar|$.

III. Ideas of proof

2) Bounds on deterministic eigenfunctions

- 1) Choose a ``basis'' of functions $(f_{h,k})_k$ in which to express the eigenfunctions ψ_h . (For instance, Dirac masses, WKB states, or Gaussian coherent states).
- 2) Understand the evolution of $f_{h,k}$ by some wave equation. For instance, consider the propagator $e^{-i\frac{t}{h}P_h}f_{h,k}$ with $P_h = -h^2\Delta$. Here, one should take t as large as possible.
- 3) Deduce some nice things about the eigenfunctions ψ_h from information on $e^{-i\frac{t}{h}P_h}$.

For the quantum cat map, $t \mapsto e^{-i\frac{t}{h}P_h}$ is $|\log h|$ -periodic

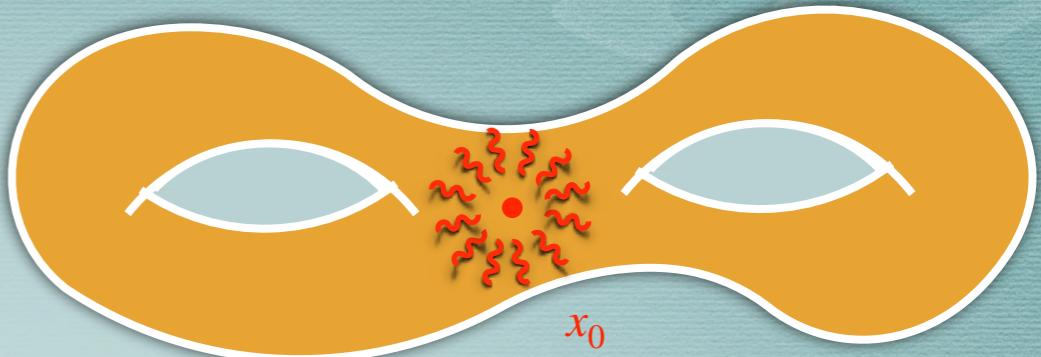
Step 2 is generally limited by the Ehrenfest time $t \approx |\log h|$.

From echo estimates to L^∞ estimates

Step 1

Radial Lagrangian state:

$$f_h(x) = \chi(d(x, x_0)) e^{\frac{i}{h}d(x, x_0)}.$$

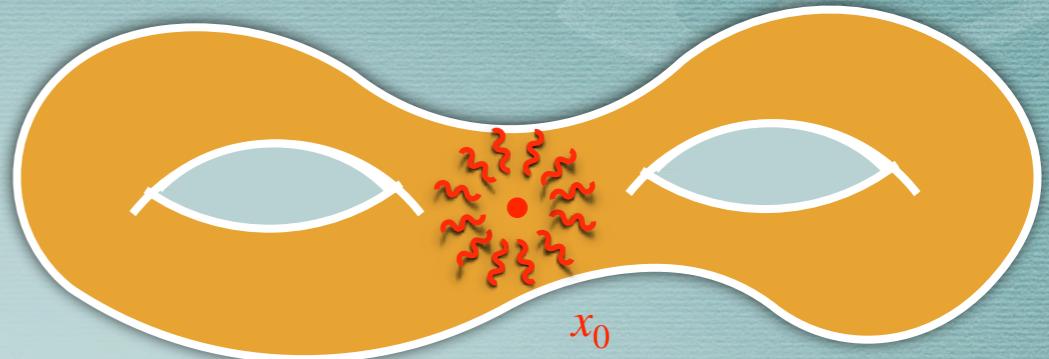


From echo estimates to L^∞ estimates

Step 1

Radial Lagrangian state:
 $f_h(x) = \chi(d(x, x_0)) e^{\frac{i}{h}d(x, x_0)}$.

Step 2



Echo estimate: (X, g) compact Riemannian manifold of **constant negative curvature**.

There exists $\gamma > 0$ such that for all $M > 0$, $\exists C_M > 0$ such that for all $t \leq M |\log h|$

$$\|e^{ith\Delta} f_h\|_{L^\infty} \leq C_M h^{\frac{1-d}{2} + \gamma}.$$

Using only Berard's bounds on eigenfunctions, we would only get

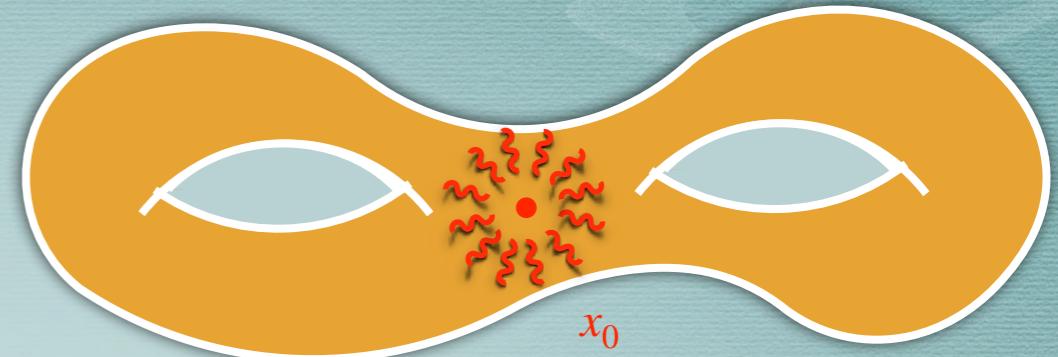
$$\|e^{ith\Delta} f_h\|_{L^\infty} \leq \frac{C}{\sqrt{|\log h|}} h^{\frac{1-d}{2}}.$$

From echo estimates to L^∞ estimates

Step 1

Radial Lagrangian state:

$$f_h(x) = \chi(d(x, x_0)) e^{\frac{i}{h}d(x, x_0)}.$$



Step 2

Echo estimate: (X, g) compact Riemannian manifold of **constant negative curvature**.

There exists $\gamma > 0$ such that for all $M > 0$, $\exists C_M > 0$ such that for all $t \leq M |\log h|$

$$\|e^{ith\Delta} f_h\|_{L^\infty} \leq C_M h^{\frac{1-d}{2} + \gamma}.$$

Proof of the L^∞ estimate on eigenfunctions

Suppose $-h^2 \Delta \psi_h = \psi_h$.

- Fact : $|\psi_h(x_0)|^2 = Ch^{1-d} |\langle \psi_h, f_h \rangle|^2$.
- Echo estimate \implies The family $f_{n,h} := e^{ihn\Delta} f_h$, $n \leq M |\log h|$ is (almost) orthogonal.
- $|\langle f_h, \psi_h \rangle|^2 = |\langle f_{n,h}, \psi_h \rangle|^2 \quad \forall n \in \mathbb{N}$.
- Parseval's formula.

Using only Berard's bounds on eigenfunctions, we would only get

$$\|e^{ith\Delta} f_h\|_{L^\infty} \leq \frac{C}{\sqrt{|\log h|}} h^{\frac{1-d}{2}}.$$

Step 3

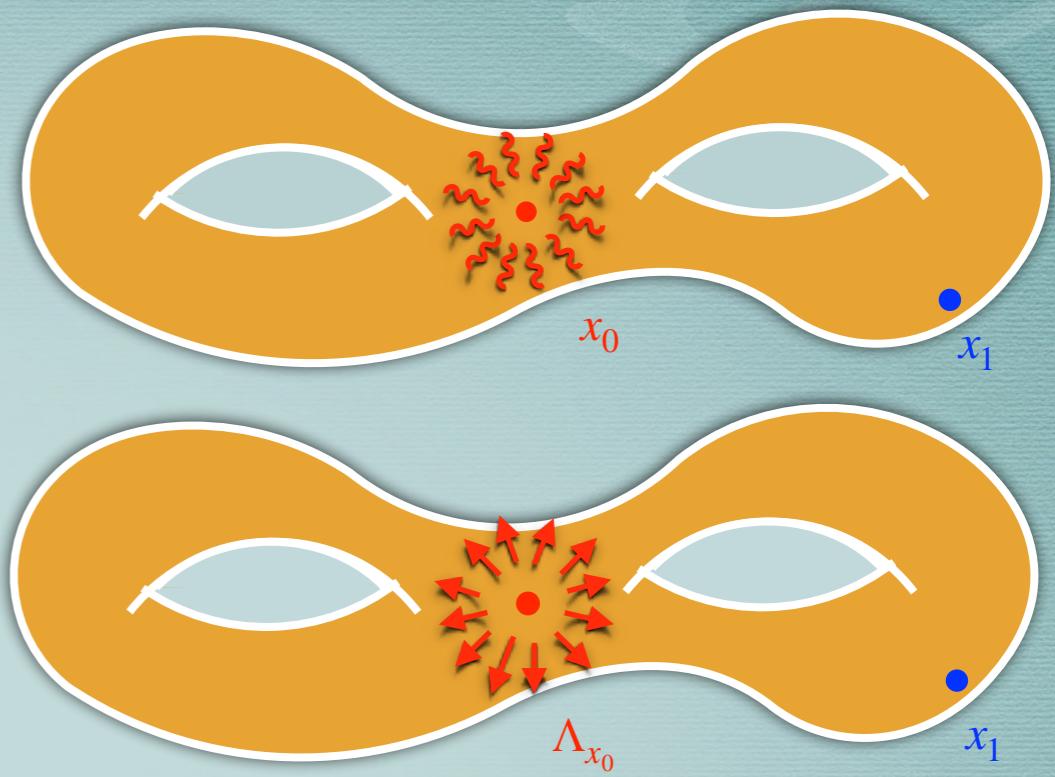
Proof of the echo estimate

Radial Lagrangian state:

$$f_h(x) = \chi(d(x, x_0)) e^{\frac{i}{\hbar} d(x, x_0)}.$$

Microlocalised on a submanifold:

$$\Lambda_{x_0} := \bigcup_{t \in I} \Phi^t(S_{x_0}^*).$$



Proof of the echo estimate

Radial Lagrangian state:

$$f_h(x) = \chi(d(x, x_0)) e^{\frac{i}{h}d(x, x_0)}.$$

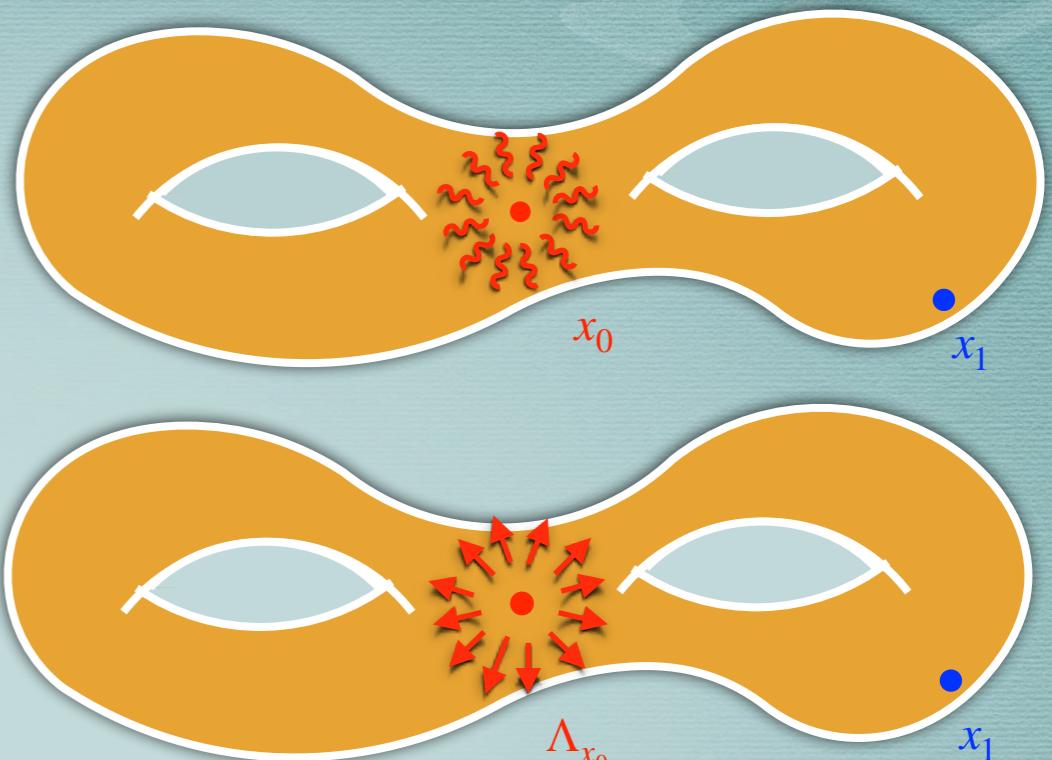
Microlocalised on a submanifold:

$$\Lambda_{x_0} := \bigcup_{t \in I} \Phi^t(S_{x_0}^*).$$

For small t , we have $(e^{ith\Delta} f_h)(x_1) \approx$

$$a_h(t, x_1) e^{\frac{i}{h}\varphi_t(x_1)}, \text{ with}$$

$\{(x_1, \nabla \varphi_t(x_1))\} = \Phi^t(\Lambda_{x_0})$, where Φ^t is the geodesic flow, and $a_h(t, x_1)$ satisfies a transport equation.



Proof of the echo estimate

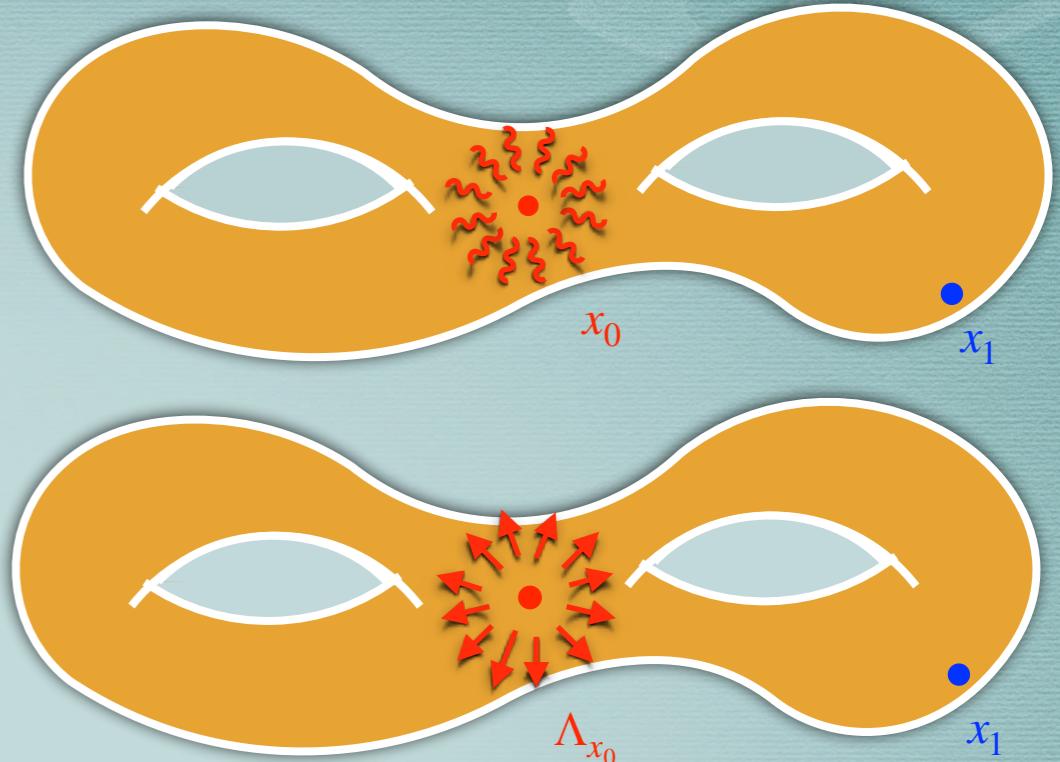
Radial Lagrangian state:

$$f_h(x) = \chi(d(x, x_0)) e^{\frac{i}{h} d(x, x_0)}.$$

Microlocalised on a submanifold:

$$\Lambda_{x_0} := \bigcup_{t \in I} \Phi^t(S_{x_0}^*).$$

For small t , we have $(e^{ith\Delta} f_h)(x_1) \approx a_h(t, x_1) e^{\frac{i}{h} \varphi_t(x_1)}$, with $\{(x_1, \nabla \varphi_t(x_1))\} = \Phi^t(\Lambda_{x_0})$, where Φ^t is the geodesic flow, and $a_h(t, x_1)$ satisfies a transport equation.

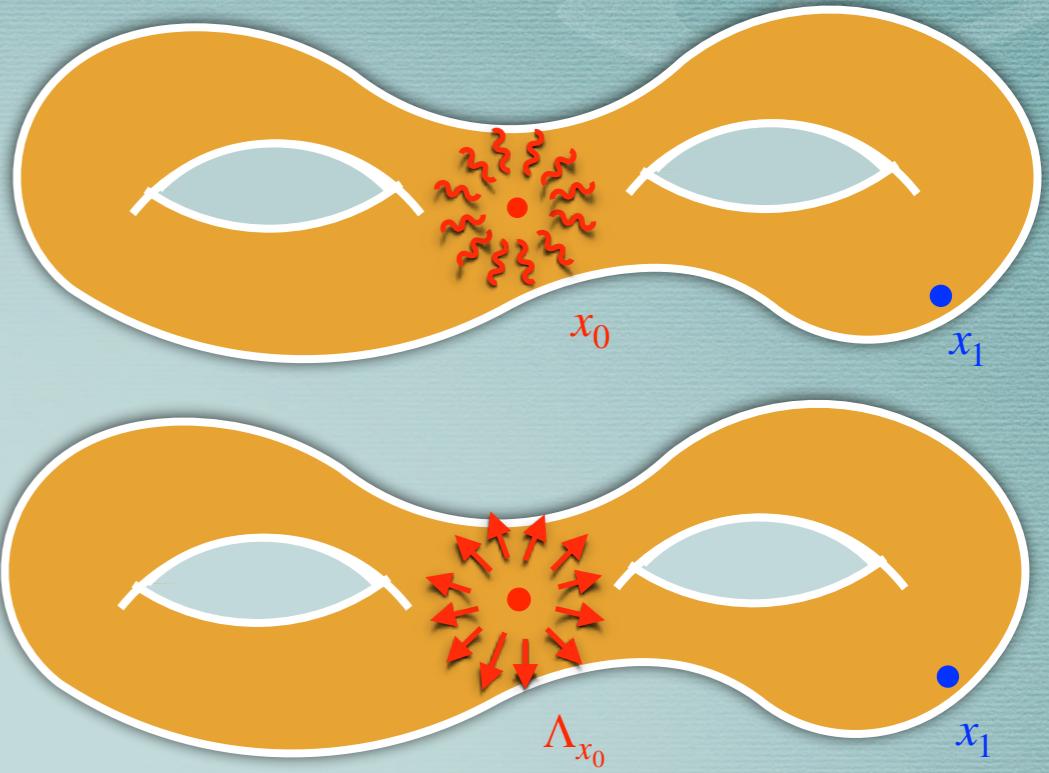


For larger t , we have $(e^{ith\Delta} f_h)(x_1) \approx \sum_j a_{j,h}(t, x_1) e^{\frac{i}{h} \varphi_{j,t}(x_1)}$, where the sum contains $O(e^{(d-1)t})$ terms, and each $a_{j,h}(t, \cdot)$ is of size $O(e^{(1-d)t/2})$.

Proof of the echo estimate

Radial Lagrangian state:

$$f_h(x) = \chi(d(x, x_0)) e^{\frac{i}{h} d(x, x_0)}.$$



Microlocalised on a submanifold:

$$\Lambda_{x_0} := \bigcup_{t \in I} \Phi^t(S_{x_0}^*).$$

For small t , we have $(e^{ith\Delta} f_h)(x_1) \approx$

$$a_h(t, x_1) e^{\frac{i}{h} \varphi_t(x_1)}, \text{ with}$$

$\{(x_1, \nabla \varphi_t(x_1))\} = \Phi^t(\Lambda_{x_0})$, where Φ^t is the geodesic flow, and $a_h(t, x_1)$ satisfies a transport equation.

For larger t , we have $(e^{ith\Delta} f_h)(x_1) \approx \sum_j a_{j,h}(t, x_1) e^{\frac{i}{h} \varphi_{j,t}(x_1)}$, where the sum contains $O(e^{(d-1)t})$ terms, and each $a_{j,h}(t, \cdot)$ is of size $O(e^{(1-d)t/2})$.

For t large enough, $|(e^{ith\Delta} f_h)(x_1)| = e^{\frac{t}{2}(d-1)} \left| \left\langle \phi_*^t \left(e^{\frac{i}{h} d(\cdot, x_0)} G_{t,x_0} \right), \mu_{x_1} \right\rangle_{L^2} \right| + O(h^\infty)$, where

- ϕ^t is the classical flow on $M := S^*X$ (and $\phi_*^t f = f \circ \phi^t$).
- G_{t,x_0} is a smooth function, bounded along with all its derivatives, independently of t (it is a regularization of the uniform measure on $\Lambda_{x_0} \subset M$, in the stable directions).
- μ_{x_1} is the uniform measure on $S_{x_1}^*X \subset M$.

Proof of the echo estimate (2)

$$|(e^{ith\Delta}f_h)(x_1)| = e^{\frac{t}{2}(d-1)} \left| \left\langle \phi_*^t \left(e^{\frac{i}{h}d(\cdot, x_0)} G_{t, x_0} \right), \mu_{x_1} \right\rangle_{L^2} \right| + O(h^\infty), \text{ where}$$

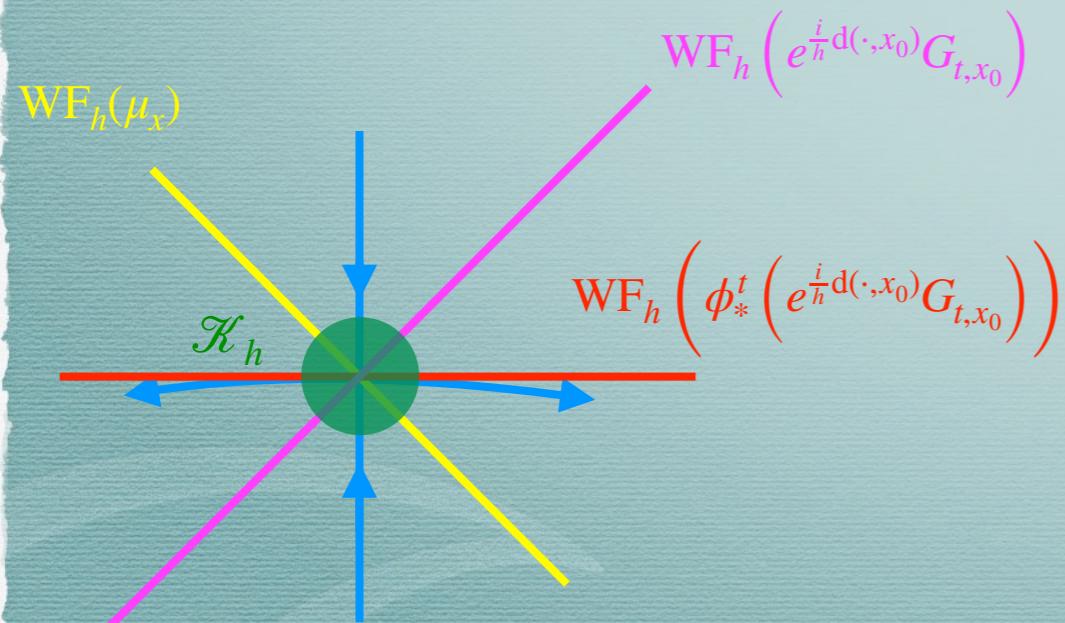
- ϕ^t is the classical flow on $M := S^*X$ (and $\phi_*^t f = f \circ \phi^t$).
- G_{t, x_0} is a smooth function, bounded along with all its derivatives, independently of t .
- μ_{x_1} is the uniform measure on $S_{x_1}^*X \subset M$

Idea (Faure-Sjöstrand ≈ 10): see $\phi_*^t : L^2(M) \longrightarrow L^2(M)$ as a quantum propagator, and thus, as a Fourier Integral Operator over T^*M . The associated classical dynamics is the symplectic lift $\widetilde{\phi}^t : T^*M \longrightarrow T^*M$.

The classical dynamics has a trapped set $K = \{(z, \zeta) \in T^*M; \zeta = \lambda\alpha(z), \lambda > 0\}$, where α is the contact one-form generating the classical dynamics.

In the sequel, we will only consider the subset $K_1 = \{(z, \zeta) \in T^*M; \zeta = \alpha(z)\}$.

All the relevant dynamics happens only in a neighborhood \mathcal{K}_h of size $h^{\frac{1}{2}-\varepsilon}$ of K_1 .



If Π_h is a pseudodifferential operator microlocalised in \mathcal{K}_h :

- $\|\Pi_h \phi_*^t \Pi_h\|_{L^2 \rightarrow L^2} \leq C e^{\left(\frac{(1-d)}{2} + \varepsilon\right)t}$ (Faure-Tsujii, Nonnenmacher-Zworski)
- $\|\Pi_h \mu_{x_1}\|_{L^2} = O(h^{-\frac{d}{4} - c\varepsilon})$
- $\left\| \Pi_h \left(e^{\frac{i}{h}d(\cdot, x_0)} G_{t, x_0} \right) \right\|_{L^2} = O(1)$
- «Invariance» by the flow gives an extra $O(h^{1/4})$.

Ongoing and future projects

- With A.Garcia Ruiz: Adapt the generic result to the case of a confining potential in \mathbb{R}^d (with a small random pseudodifferential perturbation).
- With M. Vogel: Show more properties of eigenfunctions under generic perturbations
(Quantum Unique Ergodicity? Berry's conjecture?)
- With Théophile Chaumont-Frelet: Perform numerical experiments for $\|\psi_h\|_{L^\infty}$ in variable curvature.

Thank you for your attention!