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uantum chaos

(X,2) compact manifold, or domain in R

(y;) orthonormal basis of L*(X) made of eigenfunctions
of the Laplacian:

—Al//j=/1jl//j.
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Regular billiard

Picture taken from A. Backer, 2007 Spherical barmonic
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Quantum chaos

curvature.

_~ = /
(X,g) compact manifold of negative sectional \{/(;

(y;) orthonormal basis of L*(X) made of eigenfunctions
of the Laplacian:

—Al//j=/1jt//j.

The eigenfunctions y; should equidistribute
when j — .

The geo d€SiC ﬁOW = chao e . | () |>dx should conv.erge Weakl}.f t.o the u‘niform measure
(Quantum Unique Ergodicity conjecture)
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(y;) orthonormal basis of L*(X) made of eigenfunctions
of the Laplacian:

—Al//j=/1jt//j.

The eigenfunctions y; should equidistribute
when j — .

The geo dCSiC HOW = chao e . | () |>dx should conv.erge Weakl}.f t.o the u‘niform measure
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Quantum Ergodicity theorem : Schnirelman, Zelditch, Colin de Verdiere
(70’s, 807s)
Recent advances towards QUE : Anantharaman-Nonnenmacher ’o3,
Dyatlov-Jin-Nonnenmacher 22



Quantum chaos

curvature.

(X,g) compact manifold of negative sectional \{

(y;) orthonormal basis of L*(X) made of eigenfunctions
of the Laplacian:

—Al//j=/1jt//j.

The eigenfunctions y; should equidistribute
when j — .

The geo dCSiC HOW = chao e . | () |>dx should conv.erge Weakl}.f t.o the u‘niform measure
(Quantum Unique Ergodicity conjecture)

Quantum Ergodicity theorem : Schnirelman, Zelditch, Colin de Verdiere
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. lwill .~ should not be too large.
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Theorem (Avakumovic, Hormander, Levitan 50-60) :
(X, g) compact Riemannian manifold:

d—1
—Ay = Ay) = |yl < CA 7 ||yl 2
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Existing results on L® norms of elgenfunctlons
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Existing results on L* norms ot eigenfunctions (1)
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Conjecture (Sarnak 95):
(X, g) hyperbolic surface:

Wl < C Ayl Ve > 0.



Existing results on L* norms ot eigenfunctions (1)
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| (X, g) compact Riemannian manifold:
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Existing results on L® norms of elgenfunctlons (1)

7
| Theorem (Avakumovic, Hormander, Levitan 50-60) :
|(X, g) compact Riemannian manifold:

d—
(~Ay = 2p) = [yl < CZT -

—~ =
Conjecture (Sarnak 95):
(X, g) hyperbolic surface:
Wl < C Ayl Ve > 0.
Theorem (Bérard 77) :
(X, g) compact Riemannian manifold of negative curvature:
d—1
—
(—Ay = dy) = |lyll,- < C lwll 2.
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| Theorem (lwaniec-Sarnak '95) :
| (X, g) arithmetic hyperbolic surface, for arithmetic eigenfunctions :
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Existing results on L* norms ot eigenfunctions (1)

ananee

A=
| Theorem (Avakumovic, Hormander, Levitan 50-60) :
| (X, g) compact Riemannian manifold:

(= Ay =) = Iyl < CAT Iyl 2

Conjecture (Sarnak 95):
(X, g) hyperbolic surface:

Il < CA®|lyll 2 Ve > 0.

' Theorem (Bérard 77)

(X, g) compact Riemannian manifold of negative curvature:
d—1
4

(—Ay =4y) = |yl < C

~ y/logZ

Recent generalizations to other L” norms and other manifolds: Hassell-Tacy ’15, Hezari-Riviere '16, Bonthonneau ’17, Blair-
Sogge '19, Canzani-Galkowski ’23...
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Theorem (Iwaniec-Sarnak 95) :
(X, g) arithmetic hyperbolic surface, for arithmetic eigenfunctions :
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Theorem (Bérard 77) :

(X, g) compact Riemannian manifold of negative curvature:
, 1—d
h—=
_ —h* Ay, =y,) = llyll- < C il L2
| log 7|

Conjecture (Sarnak 95): (X, g) hyperbolic surface:
Wil < Cch™lypll 2 Ve > O.
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Existing lower bounds on L*™ norms of eigenfunctions
rTheorem (Bérard 777) - A

(X, g) compact Riemannian manifold of negative curvature:
« 1-d

2
(=h*Aw, = y,) = llyll« < C A

\/ [logh| o

\

1 Conjecture (Sarnak 95): (X, g) hyperbolic surface:
; ”l//h”Loo S Cgh_8||Wh”L2 Ve > 0.

Theorem (Rudnick-Sarnak 94, Milicevic ‘10, I1):

For special families of eigenfunctions in negative curvature, we can have:

o Iftd =3, |lyllpe = ch 2|l l 2

o Ifd =2, |ly,ll;~ grows more slowly than any power of 4~!, but more rapidly than any power
of [logh].
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Theorem (Rudnick-Sarnak 94, Milicevic ‘10, I1):

For special families of eigenfunctions in negative curvature, we can have:

o Iftd =3, |lyllpe = ch 2|l l 2

o Ifd =2, |ly,ll;~ grows more slowly than any power of 4~!, but more rapidly than any power
of [logh].

L It is not clear what to conjecture about ||y ||;~ when d > 3 or in variable curvature...



Existing lower bounds on L*™ norms of eigenfunctions
rTheorem (Bérard 777) - A

(X, g) compact Riemannian manifold of negative curvature:
4 1-d

2
(=h*Aw, = y,) = llyll« < C A

\/ [log A )

\____

] Conjecture (Sarnak 95): (X, g) hyperbolic surface:
‘ lwill e < CA [yl . Ve > 0.

Theorem (Rudnick-Sarnak 94, Milicevic ‘10, I1):

For special families of eigenfunctions in negative curvature, we can have:

o Iftd =3, |lyllpe = ch 2|l l 2

o Ifd =2, |ly,ll;~ grows more slowly than any power of 4~!, but more rapidly than any power
of [logh].

L It is not clear what to conjecture about ||y ||;~ when d > 3 or in variable curvature...

h i For the quantum cat map, there exist families of eigenfunctions saturating the analogue of Bérard’s E

| bound. (These families don’t satisfy quantum unique ergodicity : Faure-Nonnemacher-de Biévre ’02))
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eorem (Bérard 77)
- (X, g) compact Riemannian manifold of negative curvature:
1—d
h =
—h* Ay, =y,) = |yl < C [yl 2.
| log 71|

Conjecture (Sarnak 95): (X, g) hyperbolic surface:
Wil < Cch™lypll 2 Ve > O.




L* norms of generic eigenfunctions

| Theorem (Bérard 77)

(X, g) compact Riemannian manifold of negative curvature:
1-d
7
(=h*Ay, = y,) = llyll - < C Iyl 2.
\/ [log A

Conjecture (Sarnak 95): (X, g) hyperbolic surface:
lwpll e < Ch™lyll2 Ve > 0.

- Theorem (I.-Voge/, 24): (X, g) compact Riemannian manifold of negative curvature. There
exists y > 0 such that, for small generic perturbations P, of —h?A, its eigenfunctions satisfy

1-d
Wl e < CHZ ]|yl 12

1
By choosing well the perturbation, we can get y = = ifd=2andy = = itd=3



L* norms of generic eigenfunctions

| Theorem (Bérard 77)

(X, g) compact Riemannian manifold of negative curvature:
1-d
7
(=h*Ay, = y,) = llyll - < C Iyl 2.
\/ [log A

Conjecture (Sarnak 95): (X, g) hyperbolic surface:
lwpll e < Ch™lyll2 Ve > 0.

- Theorem (I.-Voge/, 24): (X, g) compact Riemannian manifold of negative curvature. There
exists y > 0 such that, for small generic perturbations P, of —h?*A, its eigenfunctions satisfy

1-d
Wl e < CHZ ]|yl 12

1
By choosing well the perturbation, we can get y = = ifd=2andy = = itd=3

Dream: be able to take for P, a small perturbation of the metric/ add a small potential/consider
d—1
a typical metric in the moduli space (if d = 2), and get to y = =



L* norms of generic eigenfunctions (2)

Theorem (I.-Vogel, 24): (X, g) compact Riemannian manifold of negative curvature. There
~ exists y > 0 such that, for small generic perturbatlons P, of —h*A, its eigenfunctions satlsfy

Nyl < Ch=* +y”l//h”L2

We take P = — h*A + h®Op,(g7”), where g is a symbol
which oscillates and decorrelates at scale h”, with
0 < a, f < 1 well-chosen.
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»= — h*A + h*Op,(¢q?), where g is a symbol
.-:osc1llates and decorrelates at scale h”, with
0 < a,f < 1 well-chosen.

= (x. &), take g(p) = ) w;x(h~Pdist(p, p))), where
S

- | supp ()((h"ﬂdist( ., pj))> is a locally finite cover of T#X



Theorem (Bérard 77) :

(X, g) compact Riemannian manifold of negative curvature:
1—d

2

h
—h* Ay, =y,) = llyll- < C Nl ;2
| log 7|

Conjecture (Sarnak 95): (X, g) hyperbolic surface:
Wil < Cch™lypll 2 Ve > O.




Theorem (Bérard 77) :
(X, g) compact Riemannian manifold of negative curvature:

1-d
2

\/ [logh|

(_thWh = llfh) = |lypllp- < C

Wil < Cch™lypll 2 Ve > O.
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Approach 1: (Bourgain, Lindenstrauss, Sarnak...)
Use the fact that you have an explicit expression for the eigenfunctions, or th

eigenfunctions of an auxiliary operator.
Works only on the torus, or on arithmetic hyperbolic manifold




How to prove a result in quantum chaos ?

Approach 1: (Bourgain, Lindenstrauss, Sarnak...)

Use the fact that you have an explicit expression for the eigenfunctions, or that they are

eigenfunctions of an auxiliary operator.
Works only on the torus, or on arithmetic hyperbolic manifolds.

Approach 11: (Berard, Anantharaman, Nonnenmacher, Dyatlov, fin...)
Choose a ““basis” of functions (f; ;) in which to express the eigenfunctions y;,. (For

instance, Dirac masses, WKB states, or Gaussian coherent states).

Understand the evolution of f, ; by some wave equation. For instance, consider the
propagator e 7" "y with P, = — h*A. Here, one should take 7 as large as possible.
Deduce some nice things about the eigenfunctions yj, from information on e~'#%»,




i

il
"

LT

=
=

S e s
A T L R O e
- > =

S e
- - . e

AT T =




The eigenfunctions Py, = 7, are of the form
e'"Piy, where —h*Ay;, =y,

R e
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Here, P’ = — h*A + h*Op,(g7”), where g is a symbol which oscillates
and decorrelates at scale #”, with 0 < a, # < 1 well-chosen.
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I11. Ideas of prootf

I) Bounds on eigenfunctions ot generic operators

The eigenfunctions F;‘l"l/\fh =y, are of the form
e’ iy, where —h*Ay, = y,.

We only take ¢ bounded No step 3!

in step 2.

Here, P’ = — h°A + h“Op,(q;), where g;’ is a symbol which oscillates
and decorrelates at scale #”, with 0 < a, # < 1 well-chosen.

>
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1) Choose a “‘basis” of functions (f, ;). in which to express the eigenfunctions y;. (For instance,
h.kk p g Wy

. Dirac masses, WKB states, or Gaussian coherent states).
2) Understand the evolution of f; , by some wave equation. For instance, consider the propagator

| ek "o With P, = — h*A. Here, one should take 7 as large as possible.
'3) Deduce some nice things about the eigenfunctions y, from information on e 7%,
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Using Lagrangian states (Step 1.1)

(Monochromatic) Lagrangian states:
5,0 = a(x)eo®, 0
with |V | = ¢,
gae C.(X)

f, 1s microlocalised on
Afh = {(x, Vo(x)); x € support(a)} C $*X

Wy = Z b fin + O(h™), where
kekK,

Each f,  is of the form (1), with ||f, .|l;» = 1.
X ~4h'"°

1Dl 2 = [l ll 2
The manifolds A, are separated from ch.



Using Lagrangian states (Step 1.1)

(Monochromatic) Lagrangian states:
500 = a@x)er?™, (1)
with |V | = ¢,
gae C.(X)

f, 1s microlocalised on
Afh = {(x, Vp(x)); x € support(a)} C S*X

Fact: if —thl//h = Y, then
Wy = Z b fin + O(h™), where

keK,
e Each f, is of the form (1), with ||}, ;|l;- = 1.
e |K, |~h'™

* 1Dl o2 = [lwll 2
e The manifolds A, are separated from ch.

Similar to the fact that, on T% if —Ay = 1%y, 1> 1,
and if y € C>(T%), then you can write

= Z Inx
)(U/ = ane
ne 7%
| 2ma2



Using Lagrangian states (Step 1.1)

~
- /’
(Monochromatic) Lagrangian states: ~—
fil®) = a(x)er?®, (1) &5
with |V | =c, ?':5«
gae C.(X)
f, 1s microlocalised on
A = {(x, Vo(x)); x € support(a)} C S*X /};;,
o
Yy = Z b fin + O(h™), where
keK, . . = =
» Each f,, is of the form (1), with ||f, ,|l,» = 1. Using this decomposition and Caugldy
e |K | ~ pl-d : Schwarz, we recover |y,(x)| < Ch 2
h Y .

* 1Dl o2 = [lwll 2
e The manifolds A, are separated from ch.

Similar to the fact that, on T% if —Ay = 1%y, 1> 1,
and if y € C>(TY), then you can write

2 — Z aneinx

ne 74
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Using Lagrangian states (Step 1.1)

(Monochromatic) Lagrangian states:

fu®) = a(x)er?™,
with |V | = ¢,
a € CrX)

f, 1s microlocalised on
Afh = {(x, Vo(x)); x € support(a)} C $*X

Fact: if —thl//h = Y, then
Wy = Z b fin + O(h™), where

keK,
e Each f, is of the form (1), with ||}, ;|l;- = 1.
e |K, |~h'™

* 1Dl o2 = [lwll 2
e The manifolds A, are separated from ch.

Similar to the fact that, on T% if —Ay = 1%y, 1> 1,
and if y € C>(TY), then you can write

2 — Z aneinx

e 72
|n|2z/12

(1)

Using this decomposition and Cauchy-

l=d
2

Schwarz, we recover |y, (x)| < Ch

We see that |y, (x)|is large if:
* Most b, are not too small.
o And the b,q;(x)e7?™ have similar phases.
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- = .
= N7y = If the (6”) were independent
=== | and uniform over [0,27), we could
conclude (and obtain much better

bounds).

o Z bkak h(l‘, x)eiel?(t,x)e%(ok(t,x)
k€K,
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| Regrouping Lagrangian states ? (Step I

If the (6) were independent
and uniform over [0,27), we could
conclude (and obtain much better

bounds).

~ —h?Ay, = g, decomposed as y, = Z bi S
= kek,

Fixx € X, 1> 0: (¢ i#Ply)(x) » Z beay i, X)) g pu(t:)
k€K,

Idea: write y;, = Z Z b fin, Where

€1, kEK),

if k # k' € K, , dist(A; , Ay, ) > P

>>



g Lagrangian saes|

If the (6) were independent
and uniform over [0,27), we could
conclude (and obtain much better

bounds).

Ay, =y, decomposed as yi, = Y byf.

 Fxxe X, 1>0: (e iy )x) ~ Z beay i, X)) g pu(t:)
keK,

Idea: write y, = Z Z bef; 5» Where * The ()¢ K,, are independent.

1€l keK,”

if k # k' € K, , dist(A; , Ay, ) > P

> W

DI
RS pryy

>> h”
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g Lagrangian saes|

If the (6) were independent
and uniform over [0,27), we could
conclude (and obtain much better

bounds).

Ay, =y, decomposed as yi, = Y byf.

 Fxxe X, 1>0: (e iy )x) ~ Z beay i, X)) g pu(t:)
keK,

Idea: write y, = Z Z by f, ;» where The (67)ie,, are independent.

1€l keK,”

if k # k' € K, , dist(A; , Ay, ) > P

With probability 1 — O(h®),
2

Y bifis®| <h ) b

keKh’l keKh’l

>> h”



~ Regrouping Lagrangian states (

 —h*Ay;, =y, decomposed as y;, = )" byf,
= keK,

- Fixxe X, t>0: (e~ # iy ) (x) ~ Z beay i, X)) g pu(t:)
keK,

Idea: write y;, = Z Z b fin, Where

€1, kEK),

if k # k' € K, , dist(A; , Ay, ) > P

With probability 1 — O(h®),
2

Z bifinX)| <h™° Z |bk|2~

keK,, kek,,

If the (6) were independent =
and uniform over [0,27), we could
conclude (and obtain much better

bounds).

The (6)ck, are independent.

With probability
I — Oh®),
|y, () | < =5/ |1, ]




I11. Ideas of prootf

2) Bounds on deterministic eigenfunctions

1) Choose a ““basis” of functions (f} ), in which to express the eigenfunctions y;,. (For instance,

Dirac masses, WKB states, or Gaussian coherent states).
2) Understand the evolution of f; , by some wave equation. For instance, consider the propagator

e~ i Pif,  with P, = — h®A. Here, one should take  as large as possible.
3) Deduce some nice things about the eigenfunctions y, from information on e~'#"s,



I11. Ideas of prootf

2) Bounds on deterministic eigenfunctions

1) Choose a “‘basis” of functions (f, ;). in which to express the eigenfunctions y;. (For instance,
hi)k p 8 Y

Dirac masses, WKB states, or Gaussian coherent states).
2) Understand the evolution of f; , by some wave equation. For instance, consider the propagator

e~ i Pif,  with P, = — h®A. Here, one should take  as large as possible.
3) Deduce some nice things about the eigenfunctions y, from information on e~'#"s,

Step 2 is generally limited by the Ehrenfest
time t ~ |logh|.



I11. Ideas of prootf

2) Bounds on deterministic eigenfunctions

1) Choose a ““basis” of functions (f} ), in which to express the eigenfunctions y;,. (For instance,

Dirac masses, WKB states, or Gaussian coherent states).
2) Understand the evolution of f; , by some wave equation. For instance, consider the propagator

e~ i Pif,  with P, = — h®A. Here, one should take  as large as possible.
3) Deduce some nice things about the eigenfunctions y, from information on e~'#"s,

For the quantum cat map,  — e~ is Step 2 is generally limited by the Ehrenfest
|log | -periodic time t =~ |logh|.
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Using only Berard’s bounds on

eigenfunctions, we would only get
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Proof of the L ®° estimate on eigenfunctions Using only Berard’s bounds on
Suppose —h? Ay, =y, eigenfunctions, we would only get

/ C 1-d
. Fact : |y, (xp) |* = Ch'= | (yy, fi) |7 le™Afyl o < —=h"7".

\/ [log |

. Echo estimate => The family f, , := e""2f,,
n < M|logh]| is (almost) orthogonal.

| (fo W) e | <S> W) > Vn e N.
Parseval’s formula.
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For larger ¢, we have (e™2f,)(x)) ~ Z

i

w“ﬁow and a,(t, x,) satisfies a : _ / : =
== h( 1) contains O(e~") terms, and each a;(t, - ) is of size




Proot of the echo estimate

Radial Lagrangian state:

F®) = x(d(x, x0))en ). ki
o, A
FEyR
o
X0 X
Microlocalised on a submanifold:
AXO = U (D[(S;Xt) : ‘!\R f’:v
el w o 7%
KL .
A, <

For small 7, we have (e™Bf)(x)) &
ay(t, xl)e%(pt(xl)’ with . -
(G, Vo)) = DA, ), where @' is the  For larger £, we have (e™3)(x) & ) a;,(t,x)et %V, where the sum
Xo7? .
j

eodesic flow, and a,(, x,) satisfies a : _ . :
& : A2 contains O(e'~V") terms, and each a; (1, - ) is of size O(e

(1-dyi2)
transport equation.

For t large enough, | (e™2f,)(x)) | = ez(d=1) <¢i <e i d("xo)Gt,xO>, ﬂx1> + O(h®), where
12

@' is the classical flow on M := S*X (and ¢ f = fo P?).

- G, . is a smooth function, bounded along with all its derivatives, independently of 7 (it is a

t,xO
regularization of the uniform measure on A, C M, in the stable directions).

ey, is the uniform measure on S¥X C M.



Proof of the echo estimate (2)

| (™) (xp) | = ez

<¢>1t< <€%d(-,xo)Gt,x0) ) ﬂx1>
. @' is the classical flow on M := S*X (and ¢.f = f o P).

« G,, is a smooth function, bounded along with all its derivatives, independently of 7.

* ji, is the uniform measure on S*X C M

+ O(h®), where

L2

Idea (Faure-Sj('istrand ~10): see @l : L>(M) — L* (M) as a quantum propagator, and thus, as a Fourier
Integral Operator over T#*M. The associated classical dynamics is the symplectic lift ¢’ : T*M — T*M.

The classical dynamics has a trapped set K = {(z,{) € T*M; { = Aa(z),4 > 0}, where a is the contact
one-form generating the classical dynamics.
In the sequel, we will only consider the subset K| = {(z,{) € T*M; { = a(z)}.

All the relevant dynamics happens only in a neighborhood %, of size h1~¢ of K.

If I1,, is a pseudodifferential operator microlocalised in 7 ;;:
d-d
L, P, || 2 2 < Ce< : +8>t (Faure-Tsujii, Nonnenmacher-Zworski)

T, 1l 2 = O(h=57¢%)
H ehd("x‘))G,x ) = 0(1)
V() Lz

«Invarlance» by the flow gives an extra O(h'"™),



Ongoing and future projects

« With A.Garcia Ruiz: Adapt the generic result to the case of a confining potential in R (with a

small random pseudodifferential perturbation).

* With M. Vogel: Show more properties of eigenfunctions under generic perturbations
(Quantum Unique Ergodicity? Berry’s conjecture?)

e With Théophile Chaumont-Frelet: Perform numerical experiments for ||y ||; » in variable

curvature.
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