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2) Bounds on deterministic eigenfunctions

III. Ideas of  proof

1) Choose a ``basis’’  of functions  in which to express the eigenfunctions . (For instance, 
Dirac masses, WKB states, or Gaussian coherent states).

2) Understand the evolution of  by some wave equation. For instance, consider the propagator 
 with . Here, one should take  as large as possible.

3) Deduce some nice things about the eigenfunctions  from information on .

( fh,k)k ψh

fh,k
e−i t

h Phfh,k Ph = − h2Δ t
ψh e−i t

h Ph
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Suppose .
• Fact : .
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•  .
• Parseval’s formula.
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For t large enough, , where 

•  is the classical flow on  (and ).
•  is a smooth function, bounded along with all its derivatives, independently of  (it is a 

regularization of the uniform measure on , in the stable directions).
•  is the uniform measure on .

| (eithΔfh)(x1) | = e
t
2 (d−1) ⟨ϕt

* (e
i
h d(⋅,x0)Gt,x0), μx1⟩

L2

+ O(h∞)

ϕt M := S*X ϕt
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Gt,x0
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μx1
S*x1

X ⊂ M
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Proof  of  the echo estimate (2)
, where 

•  is the classical flow on  (and ).
•  is a smooth function, bounded along with all its derivatives, independently of .

•  is the uniform measure on 

| (eithΔfh)(x1) | = e
t
2 (d−1) ⟨ϕt

* (e
i
h d(⋅,x0)Gt,x0), μx1⟩

L2

+ O(h∞)

ϕt M := S*X ϕt
* f = f ∘ ϕt

Gt,x0
t

μx1
S*x1

X ⊂ M

Idea (Faure-Sjöstrand 10): see  as a quantum propagator, and thus, as a Fourier 
Integral Operator over . The associated classical dynamics is the symplectic lift .

≈ ϕt
* : L2(M ) ⟶ L2(M )

T*M ϕ̃ t : T*M ⟶ T*M

The classical dynamics has a trapped set , where  is the contact 
one-form generating the classical dynamics.

In the sequel, we will only consider the subset .

K = {(z, ζ) ∈ T*M; ζ = λα(z), λ > 0} α

K1 = {(z, ζ) ∈ T*M; ζ = α(z)}

WFh(μx)

WFh (ϕt
* (e

i
h d(⋅,x0)Gt,x0))

WFh (e
i
h d(⋅,x0)Gt,x0)

All the relevant dynamics happens only in a neighborhood  of size  of .𝒦h h
1
2 −ε K1

𝒦h

If  is a pseudodifferential operator microlocalised in :

•  (Faure-Tsujii, Nonnenmacher-Zworski)
•

•
• «Invariance» by the flow gives an extra .

Πh 𝒦h

∥Πhϕt
*Πh∥L2→L2 ≤ Ce( (1 − d)

2 +ε)t

∥Πhμx1
∥L2 = O(h− d

4 −cε)

Πh (e
i
h d(⋅,x0)Gt,x0)

L2

= O(1)

O(h1/4)



Ongoing and future projects

• With A.Garcia Ruiz: Adapt the generic result to the case of a confining potential in  (with a 

small random pseudodifferential perturbation).

• With M. Vogel: Show more properties of eigenfunctions under generic perturbations 

(Quantum Unique Ergodicity? Berry’s conjecture?)

• With Théophile Chaumont-Frelet: Perform numerical experiments for  in variable 

curvature.

ℝd

∥ψh∥L∞



Thank you for your attention!


