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A generalized Rosenzweig-Porter model (1960s)

Consider Hermitian random matrices H, = H; € CV*N of the form

Hy = Hy + AW

@ Hp is an arbitrary deterministic Hermitian matrix (also off-diagonal)
e /' is a random Wigner matrix (2 GUE/GOE)
@ coupling parameter A\ = \(N) > 0 is arbitrary

Goal: Study eigenvectors of H, for large N, everywhere in the spectrum
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What are Wigner matrices?

Wigner's vision: Eigenvalues of random matrices model energy levels of
large disordered quantum systems J

wip Wiz - WipN

Wo1 W22 -+ WoN
W =

WN1 Wn2 - WNN

Semicircle law pgc(x) = (27r)71«/[4 — x2]4

@ w; are centered i.i.d. random
variables up to wj; = wj;

o moment bound E[v/Nw;|P < C,

and normalization ]E|Wij|2 = %

@ eigenvalues \; < ... < Ay with
. 2
£2-norm. eigenvectors uy, ..., Uy Wigner surmise p; . (x) = 3 x2E =4/
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Eigenvectors of Wigner matrices |: Complete delocalization
Recall: Wu; = A\juj and ||u;|| =1

Complete delocalization [Erdés-Schlein-Yau '09, ... |
For any deterministic x € CN, up to N¢ with very high probability (<):

1
|y, x)|? < NHX”2 uniformly in i € [N].

lJui12

A L/IN [

>
V]

— later: Knowles, Yin, Alt, Kriiger, Schroder, Benigni, Lopatto, H., Riabov, ...
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Eigenvectors of Wigner matrices Il: ETH

@ phys: Deutsch/Srednickni '90s, therm. in closed system; mc-average
e math: Rudnick-Sarnak '90s, Quantum Unique Ergodicity (QUE)
~ uniform distr. of eigenfunctions (general open problem!)

Eigenstate Thermalization Hypothesis [C-E-H '23]
Denote (R) := N~1tr R. For any det. A € CN*N with A .= A — (A):

Al2
|(uj, Auj) — 05(A)| < % uniformly in 7,/ € [N].

o previously ||A]|, and (|A[2)Y/2 in bulk
[C-E-Schroder '20-22]; HS norm much better

@ 1/+/N-decay uniformly in the spectrum;
without any structure — see later!

Have u; L /Ziuj @ related works: Benigni-Lopatto et al.
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Part 1: Results
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Profile function in RP model (~ spatial profile in RBM)
Goal: Establish analogs of delocalization and ETH in the RP model

Hy = Ho + AW

Solution M) to Matrix Dyson Equation (MDE)

1
T =7z — Hy+ N (My(2)), IM, - Sz > 0.
AB) 0 (Mx(2)) A

— from (Hy — z) ' ~ M,(z) (local law): used to approx. individual u;'s

v =1+ Apy(z) with
n = |Sz| and

pA(z) = 7 H(SMy(2))]

— highly inhomogeneous

IN] | SMy o (SMy)

norms behave very differently: |[M,||2 < % but (|M)[?) < 2

Rz
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(De)localization in the RP model

Recall: Hy = Hyo + AW with Hyu; = A\;u;, ||uj|| = 1; My\(z) solves MDE

Define the quantum state: [ ,(z) :=

Theorem [C-E-H '25+]
Let Nm;(E)px(E + ins(E)) = 1. Then, for any deterministic x € CV

[r)\()\,' aF llh()\,))] x

[ )] < N

— we recover full delocalization bounds for flat 'y ~ 1

@ have (i) localized, (ii) non-ergodic deloc., (iii) fully deloc. phases
@ previously: Hy = diag. and "regular”, W = GUE/GOE, only bulk
— Bourgade, Huang, Landon, Yau, von Soosten, Warzel, Benigni, ...
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[r)\()\,' + llh()\,))] x

[, )] < N

For e > 0 and {x;} an ONB (e.g. the one of Hp)

[supp (3 ()] := inf {| 7] : z [(uj, x))[> > 1— ¢}
JjeJg

= 3 M+ inf()\,-))]xjxj = N allows conclusion about localization

Definition
Regime Support
localized |[supp| ~ 1
non-ergodic deloc. | 1 < |supp| < N
full delocalized |supp| ~ N
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Mobility edge phenomenon: H, := /1 — A\2Hy + AW
Take Hyp = diag, eigenvalues sampled from an independent Wigner matrix
Denote wy (o) = 1+ NA?pZ with pj, = pec(Aiy + in5(Ag)). Then

wx (o)
(A, i0))? + (wa(io))?

where for i =~ iy and \ < 1: iy io) ~ (i — o) + NX*pi A\,

‘(u,-o, e,-)‘z =<

— discrete Cauchy-like profile

. — Emo E!TIO
[SUPD (¢, (tg)| ~ Juti (i0)| ™ ~ TN (4 — [ A5 [*) VAT A, 202t >

loc non-ergodic deloc. loc

\
(4

For N=1/2 <« A < N~1/6 mobility edge at HEmobl - 2] ~ NL)\z
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Edge p;, ~ N71/3 Bulk p;, ~ 1
A< NTL/6 A< N—1/2 localized
N7V < <1 N2 < <1 non-ergodic deloc.
Azl Azl full delocalized

Simulation: N = 2000, edge only vertices 1950 — 2000

L
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A= N4
A= N-1/6
N\ = N-1/12
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Re-entrant localization [Ghosh et al, PRB 2025]

Consider specific tridiagonal Hamiltonian

(Ho)ij := hidij + #0741 + dij1)

@ gaps sy = hj,

— hj, Pareto, P(s) =
o x(0jj41+ 0 j1) discrete Laplacian
Inverse participation ratio IPRy = Y-V |u;(a)|* =

N
— have [IPR; = (1 + o(1 Z [Ma(A

a=1

]aa

$

k= 09
2 ~08
= =07
g 0.6
£ 05
03
= < Ro2

4 X Roi

1.0 rsnd : %(Q 0.
Lfi 5 L71 L705 LO LDS
Coupling strength (x)
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Taml(s > N~Yd), d € (0,1)

N~—D2 in bulk

(supp in ej-basis!)

Translation:

o N—1L

o A — NI=)/2
Our Hy is arbitrary, we
provide rigorous proof.
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Eigenstate Thermalization Hypothesis: Variance function
Recall M, solution of MDE and 'y = SM, /(SM,).

SM; ~

M; = MA()\,') [;:= <%M,> with ;= A; + inf(Ai)

Regularization of A € CN*N | removes singular part of A (~ traceless):

(MAM)

A= A= 1(i zj)—<M.M*>
]

1
Variance functional for i = j, other regime similar (simpler); A= Al

(MAT (T :A* M)
1= X3(M; M)

(52(i,j: A))? = (TIAT;A*) + X2

— inhom. HS norm of A measures overlap with the M-profiles at A;, A;
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Eigenstate Thermalization Hypothesis [Deutsch, Srednicki]
Consider Hyu; = A\ju; with ||u;j|| =1
Theorem [C-E-H "25+]

For any deterministic A € CN*N | uniformly in i,j € [N]:

|<U,',AUJ'> — 5;_,'(F,'A>} =< E%

= (%M,> ~ microcanonical average at energy A;
(i) Take A= |x) (x| = delocalization result
(ii) recover Wigner ETH as special case since:

[;=1Id and s = (JA— (A)[})1/?
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Anomalous decay in ETH

(iii) for A = 1 with flat SM ~ (SM)

<‘Ai,j‘2>1/2 1

| (i, Aug) — 05(TiA) | < VN x 11— (M;M;) |22

uniformly in the whole spectrum involving stability factor

» previously only in the bulk with || A"/|| [C-E-H-Kolupaiev '23]

N=1/2 bulk
» new anomalous ETH decay: (N|1 — (M?))~Y2 ~ { N=1/3  edge
N=1/%  cusp

studied in full generality for correlated matrices [E-H-Riabov '25+]

— remove extra term |{u;, Auj) — 6;(T;A) — (L;A) (u;. Rju;)| for N—1/2
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Part 2: Elements of the proof
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Delocalization and ETH from resolvent bounds

Workhorse: control on resolvent G(z) :

(H)\ — Z)i1 of Hy
Single resolvent bound

For z € C\R, let n := |Sz| and p(z) := 7~ }(SM(z2))|. For Nnp(z) = 1:

(SG(2))xx| = p(2)[T(2)]xx uniformly in  x € CN

Pick zj, = A\j, + 17,y - Then:

(g, x)[? SZ ‘(Uiax2>’277f,io i
Mo (Ai = Xig)? + (05,i0)

= (S6(2ip))xx < p(2)[1(2ig)1xx

—  Since N p(zj,) = 1, we get |(u,-o,x>|2 =< [M(zi))]xx/N

Rmk: Prove not just bounds, but local laws (= concentration estimates)
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Two resolvent bound
For zz € C\R, i = 1,2, let n; := |Sz]| and p; := 7 |(SM(z))|. Then,

(SG(21)ASG(22)A%)| < prpa(s2(z1, 22; A))

for N'min;(n;p;) = 1, where A = A2 s the regularized observable

v

Rmk: Regularization important, improves naive size by n; p;'s hard to gain

Pick zj, — Aj, +inj, and zj; — Aj) + 15 jo - Then:

[y, Au) |2 _ Ly [ur, Auy) [P0, 1
Nnsionsje — N i [()\i —Xp)? + 77f2,,'0] [(/\j —Ap)® + nf%io]

o 0* . - 2
= (3G (2,)ASIG(2),)A™) < p(2i5)0(2)5) (52(l0, Jo; A))
—  Since N p(zi) = Nnjjop(z,) = 1, we get ETH.
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Zigzag strategy (present only 1G Wigner but very robust)
Three steps: (i) global law, (ii) Zig: characteristic flow, (iii) Zag: GFT

(i): Initial condition: For 7) ~ 1, have [(G — m)| < 1/N. Affordable:
|G, = 1, simplified independent proof
(ll) For Gt(zt) = (Wt — Zt)_l show |<Gt(zt) — m(Zt)>| < ﬁ with
1 dB:;
W, = —~Wedt + 25, Wo=W
d t 5 tdt + \/N 5 0 y and

— cancel critical term in Ito formula for d(G;(z;))

(iii): Remove Gaussian comp. by self-cons. GFT (Gronwall); disc./cont.

Zt

6tzt = —m(Zt) — 5

n
~1
< Zig
~1/N = mm e === = It
Zag

GUE 2 2
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Main challenges
e Carry spatial 1-point and 2-point control parameters [[(z)],, and
so(z1, 20, A) through the proof; previously in mean-field both flat
— similar (complicated) profiles for RBM [Yau-Yin, E-Riabov]

@ Hy arbitrary: lack of eff. perturbation theory; proof strictly local in z's

1 G
— linearization G(z1)G(z2) = o ?{ = zlg(wmz — zz)dW not applicable
gl

Comments on Zigzag steps
(i) Global law: bootstrap from N9 down to \2p/n > 1
(i) Zig: prop. to M2p/n < 1, (SGAIGA*) & (GAG) are evolved together

iii) Zag: good Schwarz inequ. avoid 3-point fncts., e.g. 3'4 ord. cumulant:
(iii) Zag: g g

A3 - - A3 G
ngcaa(JG)bb(GA%\GA G")ab = 1573 zbjmabz\/z Musl? 3 (GASGA*G
a, a,

A2p (IGASGA* 1 GASGA*
(use Ward + M bounds) <4/ Np (SCAS ) < (s6AS ) — Gronwall
n vV an tzag vV an

Joscha Henheik (University of Geneva) (De)localization in RP model November 21, 2025 20/22




Further results provable using fine local laws

Our method(s), in principle, allow studying further questions on H,, e.g.:

@ local spectral universality in " mini-bulks” [Péché]

o Gaussian fluctuations of |{u;, x)|? and (u;, Au;) (in the bulk), using
DBM analysis of eigenvectors [Bourgade, Yau, Benigni, Marcinek, ...]

e quantum diffusion: Ho = diag(uz, ..., un) density po =: 5= at

1 Z |(eitH>\)' '|2 ~ (1—e““2f ZJ-E] ((Hj - M,-O)Z + (a)\2)2)*1 e_Mztl(io eJ)
M= o T e (1 = 1ig)? + (@X2)2) 1 |71

for | J| ~ N using e = ;L § ¢! G(z)dz; cf. [E-H-Reker-Riabov '23]

e analysis of spectral form factor SFF(t) = ]E‘ (eithh) ’2 for short times

Joscha Henheik (University of Geneva) (De)localization in RP model November 21, 2025 21/22



Summary: (De)localization in RP model

Hy = Hy+ AW

(i) Generalized RP model, arbitrary Hp, arbitrary coupling A > 0, general
Wigner matrix WV, uniformly in the spectrum

(ii) Eigenvector (de)localization : Mobility edge, re-entrant localization
(iii) Eigenstate Thermalization Hypothesis with anomalous decay
(iv) Proof via resolvent bounds, obtained by dynamical Zigzag strategy

Thanks for your attention!
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