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A generalized Rosenzweig-Porter model (1960s)

Consider Hermitian random matrices Hλ = H∗
λ ∈ CN×N of the form

Hλ = H0 + λW

H0 is an arbitrary deterministic Hermitian matrix (also off-diagonal)

W is a random Wigner matrix (⊋ GUE/GOE)

coupling parameter λ = λ(N) > 0 is arbitrary

Goal: Study eigenvectors of Hλ for large N, everywhere in the spectrum
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What are Wigner matrices?

Wigner’s vision: Eigenvalues of random matrices model energy levels of
large disordered quantum systems

W =


w11 w12 · · · w1N

w21 w22 · · · w2N
...

...
. . .

...
wN1 wN2 · · · wNN


wij are centered i.i.d. random
variables up to wij = w̄ji

moment bound E|
√
Nwij |p ≤ Cp

and normalization E|wij |2 = 1
N

eigenvalues λ1 ≤ ... ≤ λN with
ℓ2-norm. eigenvectors u1, ...,uN

Semicircle law ρsc(x) = (2π)−1
√

[4 − x2]+

Wigner surmise p
(2)
Wig.(x) = 32

π2 x
2E−4x2/π

Joscha Henheik (University of Geneva) (De)localization in RP model November 21, 2025 3 / 22



Eigenvectors of Wigner matrices I: Complete delocalization
Recall: Wui = λiui and ∥ui∥ = 1

Complete delocalization [Erdős-Schlein-Yau ’09, ... ]

For any deterministic x ∈ CN , up to Nϵ with very high probability (≺):

|⟨ui , x⟩|2 ≺
1

N
∥x∥2 uniformly in i ∈ [N] .

[N]

∼ 1/N

∥ui∥2∞

→ later: Knowles, Yin, Alt, Krüger, Schröder, Benigni, Lopatto, H., Riabov, ...
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Eigenvectors of Wigner matrices II: ETH
phys: Deutsch/Srednickni ’90s, therm. in closed system; mc-average

math: Rudnick-Sarnak ’90s, Quantum Unique Ergodicity (QUE)

∼ uniform distr. of eigenfunctions (general open problem!)

Eigenstate Thermalization Hypothesis [C-E-H ’23]

Denote ⟨R⟩ := N−1 trR. For any det. A ∈ CN×N with Å := A− ⟨A⟩:

|⟨ui ,Auj⟩ − δij⟨A⟩| ≺

√
⟨|Å|2⟩
N

uniformly in i , j ∈ [N] .

ui

(A− ⟨A⟩)uj

Have ui ⊥ Åuj

previously ∥Å∥, and ⟨|Å|2⟩1/2 in bulk
[C-E-Schröder ’20-22]; HS norm much better

1/
√
N-decay uniformly in the spectrum;

without any structure → see later!

related works: Benigni-Lopatto et al.
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Part 1: Results
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Profile function in RP model (∼ spatial profile in RBM)
Goal: Establish analogs of delocalization and ETH in the RP model

Hλ = H0 + λW

Solution Mλ to Matrix Dyson Equation (MDE)

− 1

Mλ(z)
= z − H0 + λ2⟨Mλ(z)⟩, ℑMλ · ℑz > 0.

→ from (Hλ − z)−1 ≈ Mλ(z) (local law): used to approx. individual ui ’s

1/ν

ν

⟨ℑMλ⟩

i 7→ (ℑMλ)ii

[N ]

ν = η + λ2ρλ(z) with

η := |ℑz | and
ρλ(z) := π−1|⟨ℑMλ(z)⟩|

→ highly inhomogeneous

ℑMλ ̸∼ ⟨ℑMλ⟩

norms behave very differently: ∥Mλ∥2 ≲ 1
ν2

but ⟨|Mλ|2⟩ ≲ ρ
ν
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(De)localization in the RP model

Recall: Hλ = H0 + λW with Hλui = λiui , ∥ui∥ = 1; Mλ(z) solves MDE

Define the quantum state: Γλ(z) :=
ℑMλ(z)

⟨ℑMλ(z)⟩

Theorem [C-E-H ’25+]

Let Nηf(E )ρλ(E + iηf(E )) = 1. Then, for any deterministic x ∈ CN

∣∣〈ui , x⟩
∣∣2 ≺ [

Γλ(λi + iηf(λi ))
]
xx

N

→ we recover full delocalization bounds for flat Γλ ∼ 1

have (i) localized, (ii) non-ergodic deloc., (iii) fully deloc. phases

previously: H0 = diag. and ”regular”, W = GUE/GOE, only bulk
→ Bourgade, Huang, Landon, Yau, von Soosten, Warzel, Benigni, ...
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∣∣〈ui , x⟩
∣∣2 ≺ [

Γλ(λi + iηf(λi ))
]
xx

N

For ϵ > 0 and {xj} an ONB (e.g. the one of H0)

|supp{xj}(ui )| := inf
{
|J | :

∑
j∈J

|⟨ui , xj⟩|2 ≥ 1− ϵ}

→ ∑
j

[
Γλ(λi + iηf(λi ))

]
xjxj

= N allows conclusion about localization

Definition

Regime Support
localized |supp| ∼ 1

non-ergodic deloc. 1 ≪ |supp| ≪ N
full delocalized |supp| ∼ N
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Mobility edge phenomenon: Hλ :=
√
1− λ2H0 + λW

Take H0 = diag, eigenvalues sampled from an independent Wigner matrix

Denote ωλ(i0) = 1 + Nλ2ρ2i0 with ρi0 = ρsc(λi0 + iηf(λi0)). Then∣∣⟨ui0 , ei ⟩
∣∣2 ≺ ωλ(i0)(

fλ(i , i0)
)2

+ (ωλ(i0))2

where for i ≈ i0 and λ ≪ 1: fλ(i , i0) ∼ (i − i0) + Nλ4ρi0λi0

→ discrete Cauchy-like profile

|supp{ei}(ui0)| ∼ |ui0(i0)|
−2 ∼ 1+Nλ2(4− |λi0 |

2)+Nλ6|λi0 |
2 Emob Emob

non-ergodic deloc.loc. loc.

For N−1/2 ≪ λ ≪ N−1/6 mobility edge at
∣∣|Emob| − 2

∣∣ ∼ 1
Nλ2
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Edge ρi0 ∼ N−1/3 Bulk ρi0 ∼ 1

λ ≪ N−1/6 λ ≪ N−1/2 localized

N−1/6 ≪ λ ≪ 1 N−1/2 ≪ λ ≪ 1 non-ergodic deloc.
λ ≳ 1 λ ≳ 1 full delocalized

Simulation: N = 2000, edge only vertices 1950 – 2000

λ = N−1/4

λ = N−1/6

λ = N−1/12
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Re-entrant localization [Ghosh et al, PRB 2025]
Consider specific tridiagonal Hamiltonian

(H0)ij := hiδi ,j + κ(δi ,j+1 + δi ,j−1)

gaps sℓ := hiℓ+1
− hiℓ Pareto, P(s) = d

N sd+11(s ≥ N−1/d), d ∈ (0, 1)
κ(δi ,j+1 + δi ,j−1) discrete Laplacian

Inverse participation ratio IPR2 =
∑N

a=1 |ui (a)|4 = N−D2 in bulk

→ have IPR2 = (1 + o(1))
N∑

a=1

(
[Γλ(λi )]aa

)2
(supp in ei -basis!)

Translation:

N → L

λ → N(1−γ)/2

Our H0 is arbitrary, we
provide rigorous proof.
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Eigenstate Thermalization Hypothesis: Variance function

Recall Mλ solution of MDE and Γλ = ℑMλ/⟨ℑMλ⟩.

Mi := Mλ(λ̂i ) Γi :=
ℑMi

⟨ℑMi ⟩
with λ̂i := λi + iηf(λi )

Regularization of A ∈ CN×N , removes singular part of A (∼ traceless):

Åi ,j := A− 1(i ≈ j)
⟨MiAM

∗
j ⟩

⟨MiM∗
j ⟩

1

Variance functional for i ≈ j , other regime similar (simpler); Å ≡ Åi ,j

(
s2(i , j ;A)

)2
:= ⟨Γi ÅΓj Å∗⟩+ λ2

∣∣∣∣∣ ⟨Mi ÅΓj⟩⟨Γi Å∗Mj⟩
1− λ2⟨MiMj⟩

∣∣∣∣∣
→ inhom. HS norm of A measures overlap with the M-profiles at λi , λj
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Eigenstate Thermalization Hypothesis [Deutsch, Srednicki]

Consider Hλui = λiui with ∥ui∥ = 1

Theorem [C-E-H ’25+]

For any deterministic A ∈ CN×N , uniformly in i , j ∈ [N]:

∣∣〈ui ,Auj⟩ − δij⟨ΓiA⟩
∣∣ ≺ s2(i , j ;A)√

N

→ ⟨ΓiA⟩ = ⟨ℑMiA⟩
⟨ℑMi ⟩ ≈ microcanonical average at energy λi

(i) Take A = |x⟩ ⟨x | =⇒ delocalization result

(ii) recover Wigner ETH as special case since:

Γi = Id and s2 = ⟨|A− ⟨A⟩|2⟩1/2
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Anomalous decay in ETH

(iii) for λ = 1 with flat ℑM ∼ ⟨ℑM⟩

∣∣〈ui ,Auj⟩ − δij⟨ΓiA⟩
∣∣ ≺ ⟨|Åi ,j |2⟩1/2√

N
× 1

|1− ⟨MiMj⟩|1/2

uniformly in the whole spectrum involving stability factor

▶ previously only in the bulk with ∥Åi,j∥ [C-E-H-Kolupaiev ’23]

▶ new anomalous ETH decay: (N|1− ⟨M2
i ⟩|)−1/2 ∼


N−1/2 bulk

N−1/3 edge

N−1/4 cusp

studied in full generality for correlated matrices [E-H-Riabov ’25+]

→ remove extra term
∣∣〈ui ,Auj⟩ − δij⟨ΓiA⟩ − ⟨LijA⟩⟨ui ,Rijuj⟩

∣∣ for N−1/2
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Part 2: Elements of the proof
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Delocalization and ETH from resolvent bounds
Workhorse: control on resolvent G (z) := (Hλ − z)−1 of Hλ

Single resolvent bound

For z ∈ C \ R, let η := |ℑz | and ρ(z) := π−1|⟨ℑM(z)⟩|. For Nηρ(z) ≳ 1:

|(ℑG (z))xx | ≺ ρ(z)[Γ(z)]xx uniformly in x ∈ CN

Pick zi0 = λi0 + iηf,i0 . Then:

|⟨ui0 , x⟩|2
ηf,i0

≤
∑
i

|⟨ui , x⟩|2ηf,i0
(λi − λi0)

2 + (ηf,i0)
2

= (ℑG (zi0))xx ≺ ρ(zi0)[Γ(zi0)]xx

→ Since Nηf,i0ρ(zi0) = 1, we get |⟨ui0 , x⟩|2 ≺ [Γ(zi0)]xx/N

Rmk: Prove not just bounds, but local laws (= concentration estimates)
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Two resolvent bound

For zi ∈ C \ R, i = 1, 2, let ηi := |ℑzi | and ρi := π−1|⟨ℑM(zi )⟩|. Then,

|⟨ℑG (z1)ÅℑG (z2)Å
∗⟩| ≺ ρ1ρ2

(
s2(z1, z2;A)

)2
for N mini (ηiρi ) ≳ 1, where Å = Åz1,z2 is the regularized observable

Rmk: Regularization important, improves naive size by η; ρi ’s hard to gain

Pick zi0 = λi0 + iηf,i0 and zj0 = λj0 + iηf,j0 . Then:

|⟨ui0 , Åuj0⟩|2
Nηf,i0ηf,j0

≤ 1

N

∑
i ,j

|⟨ui , Åuj⟩|2ηf,i0ηf,j0[
(λi − λi0)

2 + η2f,i0
] [
(λj − λj0)

2 + η2f,j0
]

= ⟨ℑG (zi0)ÅℑG (zj0)Å
∗⟩ ≺ ρ(zi0)ρ(zj0)

(
s2(i0, j0;A)

)2
→ Since Nηf,i0ρ(zi0) = Nηf,j0ρ(zj0) = 1, we get ETH.
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Zigzag strategy (present only 1G Wigner but very robust)
Three steps: (i) global law, (ii) Zig: characteristic flow, (iii) Zag: GFT

(i): Initial condition: For η ∼ 1, have |⟨G −m⟩| ≺ 1/N. Affordable:
∥Gi∥ ≲ 1, simplified independent proof

(ii): For Gt(zt) = (Wt − zt)
−1 show |⟨Gt(zt)−m(zt)⟩| ≺ 1

Nηt
with

dWt = −1

2
Wtdt +

dBt√
N

, W0 = W , and ∂tzt = −m(zt)−
zt
2

→ characteristics cancel critical term in Ito formula for d⟨Gt(zt)⟩
(iii): Remove Gaussian comp. by self-cons. GFT (Gronwall); disc./cont.

GUE

η

∼ 1

∼ 1/N
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Main challenges

Carry spatial 1-point and 2-point control parameters [Γ(z)]xy and
s2(z1, z2;A) through the proof; previously in mean-field both flat
→ similar (complicated) profiles for RBM [Yau-Yin, E-Riabov]

H0 arbitrary: lack of eff. perturbation theory; proof strictly local in z ’s

→ linearization G (z1)G (z2) =
1

2πi

∮
γ

G (w)

(w − z1)(w − z2)
dw not applicable

Comments on Zigzag steps

(i) Global law: bootstrap from N1000 down to λ2ρ/η ≳ 1

(ii) Zig: prop. to λ2ρ/η ≪ 1, ⟨ℑGAℑGA∗⟩ & ⟨GAG ⟩ are evolved together

(iii) Zag: good Schwarz inequ. avoid 3-point fncts., e.g. 3rd ord. cumulant:

λ3

N5/2

∑
a,b

Gaa(ℑG)bb(GAℑ
∣∣GA∗G∗)ab ≲

λ3

N5/2

√∑
a,b

|Mab|2
√∑

b

|(ℑM)bb|2
∑
a

(GAℑGA∗G∗)aa

(use Ward + M bounds) ≲

√
λ2ρ

η

⟨ℑGAℑGA∗⟩
√
Nηρ

≪
1

tzag

⟨ℑGAℑGA∗⟩
√
Nηρ

→ Gronwall
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Further results provable using fine local laws

Our method(s), in principle, allow studying further questions on Hλ, e.g.:

local spectral universality in ”mini-bulks” [Péché]

Gaussian fluctuations of |⟨ui , x⟩|2 and ⟨ui ,Aui ⟩ (in the bulk), using
DBM analysis of eigenvectors [Bourgade, Yau, Benigni, Marcinek, ...]

quantum diffusion: H0 = diag(µ1, ..., µN) density ρ0 =: α
2π at µi0

1

|J |
∑
j∈J

∣∣(eitHλ
)
i0j

∣∣2 ≈
(
1−e−αλ2t

) ∑
j∈J

(
(µj − µi0 )

2 + (αλ2)2
)−1

|J |
∑

j∈[N]

(
(µj − µi0 )

2 + (αλ2)2
)−1

+e−αλ2t 1(i0 ∈ J )

|J |

for |J | ∼ N using eitHλ = 1
2πi

∮
eitzG (z)dz; cf. [E-H-Reker-Riabov ’23]

analysis of spectral form factor SFF(t) = E
∣∣⟨eitHλ⟩

∣∣2 for short times
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Summary: (De)localization in RP model

Hλ = H0 + λW

(i) Generalized RP model, arbitrary H0, arbitrary coupling λ > 0, general
Wigner matrix W , uniformly in the spectrum

(ii) Eigenvector (de)localization : Mobility edge, re-entrant localization

(iii) Eigenstate Thermalization Hypothesis with anomalous decay

(iv) Proof via resolvent bounds, obtained by dynamical Zigzag strategy

Thanks for your attention!
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