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Spectral measures for 
Anderson localization in 
variants of the “standard 
model”
Flat bands, quasi-periodic electron models and many-body interactions
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[203, 197] + [194] "Unconventional delocalization in a family of 3D Lieb lattices“, J. Liu, C. Danieli, J. Zhong, RAR, Phys. Rev. B 106, 
214204 (2022)+ [186,182,180]

Works published in [warwick.ac.uk/rudoroemer/publications]

Flat bands:

Quasi-periodic AB tiling:

[189] "The GOE ensemble for quasiperiodic tilings without unfolding: r-value statistics“, U. Grimm, RAR, Phys. Rev. 
B 104(6), L060201 (2021); [20] "Level Spacings Distributions of Planar Quasiperiodic Tight-Binding Models“, J. X. 
Zhong, U. Grimm, RAR, M. Schreiber, Phys. Rev. Lett. 80, 3996-3999 (1998).

Many-body and disorder:

[200] "Spectral and Entanglement Properties of the Random Exchange Heisenberg Chain“, Y. Gao, RAR, Phys. Rev. 
B 111, 104202 (2025)



Compactly localized states (CLS) imply flat bands (Ex: Lieb models)
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• exhibits
• flat bands and 

• dispersive 
bands

• Simple “square 
lattice” structure 
makes it straight-
forward to study

• Ideal test case for 
flat band physics

Lieb model in 2D and its extensions, the clean case

ℒ2(1) ℒ2(2) ℒ2(3) ℒ2(4)

[also Da Zhang, Yiqi Zhang, Hua Zhong, Changbiao Li, Zhaoyang Zhang, 
Yanpeng Zhang, Milivoj R. Belić, “New edge-centered photonic square 
lattices with flat bands”, Annals of Physics 382 (2017), 160-169]

High-Tc SCs

CuOx planes



• exhibits
• flat bands and 

• dispersive 
bands

• Simple “square 
lattice” structure 
makes it straight-
forward to study

• Ideal test case for 
flat band physics 
in 3D

Lieb model in 3D and its extensions, the clean case
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ABX3 Perovskite

X = Lieb sites
B = cube sites
A = not present



Electronic flat band [1] J. Vidal et al., Phys. Rev. Lett. 81, 5888 (1998). 
[2] C. C. Abilio et al., Phys. Rev. Lett. 83, 5102 (1999).

The first experiment：Superconducting wire network 

Photonic flat band

Ultra-cold atoms in an 
optical flat band

[1] R. Shen, Phys. Rev. B 81, 041410 (2010).
[2] V. Apaja, Phys. Rev. A 82, 041402 (2010).
[3] S. Taie er al., Sci. Adv. 1, e1500854 (2015).

Atomic flat band [1] R. Drost et al., Nat. Phys. 13, 668 (2017).
[2] M. R. Slot et al., Nat. Phys. 13, 672 (2017).

Dispersive band   Flat band    

[1] Guzmán-Silva, New J. Phys. 16, 063061 (2014).
[2] R. A. Vicencio et al., Phys. Rev. Lett. 114, 245503 (2015).
[3] S. Mukherjee et al., Phys. Rev. Lett. 114, 245504 (2015).

Further experimental realizations

STM for chlorine monolayer on a Cu(100) (surface)



• What happens in the presence of disorder?
• 2D: [180] "Disorder effects in the two-dimensional Lieb lattice and its extensions“, X. Mao, J. Liu, J. Zhong, RAR, Physica E 124, 

114340 (2020)

• 3D: [182] "Localization, phases and transitions in the three-dimensional extended Lieb lattices“, J. Liu, X. Mao, J. Zhong, RAR, Phys. 
Rev. B 102, 174207 (2020)

• What happens for CLS-preserving disorder?
• [194] "Unconventional delocalization in a family of 3D Lieb lattices“, J. Liu, C. Danieli, J. 

Zhong, RAR Phys. Rev. B 106, 214204 (2022)

• Can we engineer CLS-preserving “Lieb meta-materials”?
• [197]"Quantum engineering for compactly localized states in disordered Lieb lattices“, C. Danieli, J. Liu, RAR, Eur. Phys. J. B 97, 128

(2024), arXiv:2309.04227 

• How to load, store and read-out quantum states via CLSs?
• Current work: C. Danieli, J. Liu, RAR, R. A. Vicencio, https://doi.org/10.48550/arXiv.2508.01846

The fate of the compactly-localize states (CLSs)



• special disorder at cube sites only, no disorder at Lieb
sites -> CLS will survive!”

CLS-preserving disorder?



• DOS

• TMM: 
• much harder since effectively less disorder on renormalized sites, hence harder 

to converge

• How to compute modified phase diagrams for CLS-preserving disorder?

Extended Lieb models in 2 and 3D with CLS-preserving disorder

2 2



V. Oganesyan and D. A. Huse, Phys. Rev. B 75, (2007):

Energy-level ratio statistics (without unfolding)
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• TMM:
• Phase boundaries determined 

from scaling behavior with 
small 2 2 2 2

(with 99% target 
accuracy)

Does it work? Testing for the full disorder, equal on cube and Lieb

ℒ3(1)

GOE
r

GOE
r

Poisson
r

Poisson
r

• Sparse-diagonalization
• Phase boundaries determined from 

for 3 3 3, i.e. sites 
𝑁 = (3 × 10)3 = 27000, (3 × 20)3 = 216000

ℒ3(1) ℒ3(1)10M  20M 



3D Lieb model with CLS-preserving disorder
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• “inverse” Anderson transition?

• CLS appear to show values for GOE. Superposition of CLS!

• Non-CLS states delocalize close to FB energy E=0!?

• BORING? No more! 

3D Lieb model with CLS-preserving disorder, 1st results

20M 
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TMM:
2 2 2 2 2

𝜈 = 1.51(5)

𝜈 = 1.51(4)



+ -values: 3 3 3 3 3, 3

10000 samples for each disorder value

𝜈 = 1.54(9)

𝜈 = 1.44(10)
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Enhancement of CLS stability

• Projected wave function

3

• Close to CLS at , disorder 
moves dispersive states 
Towards when on Lieb sites

Away from when on cube sites

ℒ3(1)

𝑊 = 10

𝑊 = 20

𝑊 = 50

𝑊 = 10

𝑊 = 50

𝑊 = 20



No “inverse Anderson” transition – something else

• TMM or ELS or wave functions (P) cannot identify a single, system-size independent 
crossing point

• So either our system sizes 𝑀2 ×∞ (TMM) up to 𝑀 = 20 or 𝑁3 (ELS, WF) are too small or 
this is not a “transition”, but a more gentle crossover!



• cover space without gaps or overlaps but never repeat exactly.

• local regularity with global aperiodicity

• wavefunctions shows scale-invariant fluctuations across the tiling.

ELS for quasi-periodic tilings
𝒓,𝒓′

⟨𝒓≠𝑟′⟩

We studied Ammann-Beenker tilings up to 157369 vertices and tilings with random “phase” flips 
including up to up to 8358000 r-values.

AB tiling, inflation 3 Periodic approximant 
[cut-out square]

Phase-flipped AB 
approximant



• with unfolding, universal results are 
possible

• without unfolding, results are not 
expected to be universal

• we do unfolding”:

• DOS is spiky, needs “unfolding”

ELS for quasi-periodic tilings



• when taking into account dihedral 
symmetry, then 7 independent 
sectors

• all sectors follow 

• individual sectors follow

exp(−

• also works for other tilings and 
different “cuts” (Sinai-billiard shape) 
of AB tiling

ELS is GOE



ELS is GOE, better than Wigner!

• in fact, GOE is followed even 
better than Wigner surmise

• see small-s and large-s
behaviour for the largest patch 
of one irreducible sector

• not often that “disordered” 
systems using the “standard 
model” show this 

J. X. Zhong, U. Grimm, RAR, M. Schreiber, Phys. Rev. Lett. 
80, 3996-3999 (1998).



maybe unfolding did this (we checked already then)?

• no, using r-value statistics, i.e. without unfolding gives 
same result: GOE

• 4887638 r-values used

ELS is GOE in QP tilings

Phase-flipped AB approximantsAB tiling, inflation 5
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U. Grimm, RAR, Phys. Rev. B 104(6), L060201 (2021) 



• poster child/model (1D):

• Interactions mix all the (Fock) states, leading to 
ergodicity

• disorder leads to localized states, can that be strong 
enough to prevent mixing, hence absence of ergodicity?

• we are interested in all states, so not just a ground state 
question

Interactions in the presence of disorder



A picture of MLB:

• L=16, 12870 states 
in Fock space (in 
m=0 sector)

• roughly equal to 
12996=1442

• increasing the 
disorder leads to 
less Fock states 
contributing to 
eigenstate -> Fock-
space localization

bottom of spectrum

centre of spectrum



• Luitz, D. J., N. Laflorencie, 
and F. Alet (2015). “Many-
body localization edge in 
the random-field 
Heisenberg chain”. In: 
Physical Review B 91.8, p. 
81103. 

Finite-Size Scaling hints at a transition:



• entanglement-based measure

• Fidelity-based measures

• r-value

• MBL = many-body localization

Even a full phase diagram can be computed:



• random exchange model, retains full SU(2) symmetry

• Vasseur et al. [PRB 93, 134207 (2016)] report transition from ergodic states to MBL states 
at strong disorders. 

• Protopopov et al. [PRX 10, 011025 (2020)] find states intermediate between extended 
states and MBL states even at strong disorders, i.e. no MBL transition

• Siegl and Schliemann  (level statistics) argue [NJP 25, 123002 (2023)] for transition from 
ergodic phase to a phase that is different from both ergodic and MBL

• Saraidaris et al. [PRB 109, 094201 (2024)] suggest that thermalization and delocalization 
appear at large system sizes, L = 48, using tDMRG

• Han et al. [arXiv:2411.09368] found no evidence of an MBL transition studying the time 
and disorder dependence of multifractal exponents

Interactions in the presence of disorder 𝐻 = ∑𝐽𝑖𝑗 𝑐𝑖
+𝑐𝑗 + ℎ. 𝑐. + 1∑𝑛𝑖 𝑛𝑗

𝑖𝑗

𝐿

𝑖𝑗



• ground state properties real-space renormalize to 
random singlet phase with increasing disorder:

Ma, Dasgupta, Hu, PRL 43, 1434 (1979); Dasgupta,  
Ma, PRB 22, 1305 (1980); Fisher, PRB 50, 3799 (1994).

• P(J) peaked at J=0 with long-tail for J>0

-> a complicated model!

• Let’s look at more P(J)’s

• Assure that for all i,j to 
stay antiferromagnetic

[200] "Spectral and Entanglement Properties of the Random Exchange 
Heisenberg Chain“, Y. Gao, RAR, Phys. Rev. B 111, 104202 (2025)



energy

SU(2)-invariant, i.e. S2 and Sz conserved 
(quantum numbers s,m)

participation ratio



• full spectrum:

r-value distributions

• centre of spectrum:



• transition when FM 
couplings become 
important?

Different P(J) give different answers (state-based measures)

• weak transition?

• no transition?



Different sectors give different answers



• Flat band systems, CLS, can be used for storage

• Quasi-period systems show GOE

• Many-body localization uses ELS

Conclusions/summary/outlook

"Quantum storage with flat bands“, C. Danieli, J. Liu, RAR, R. A. Vicencio, arXiv:2508.01846
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