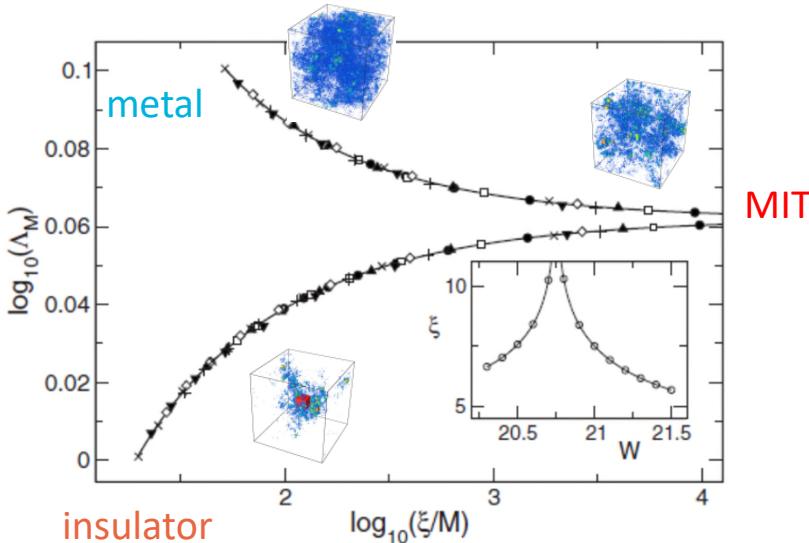
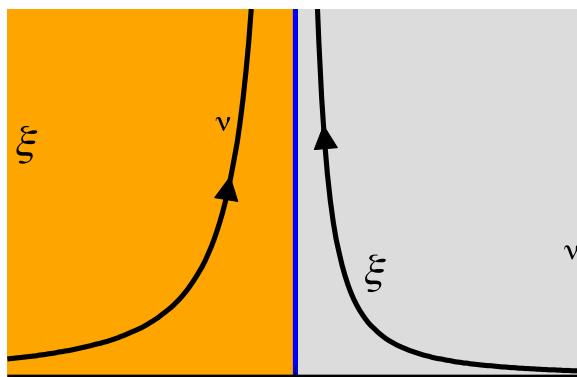


The 3D Anderson model with disorder

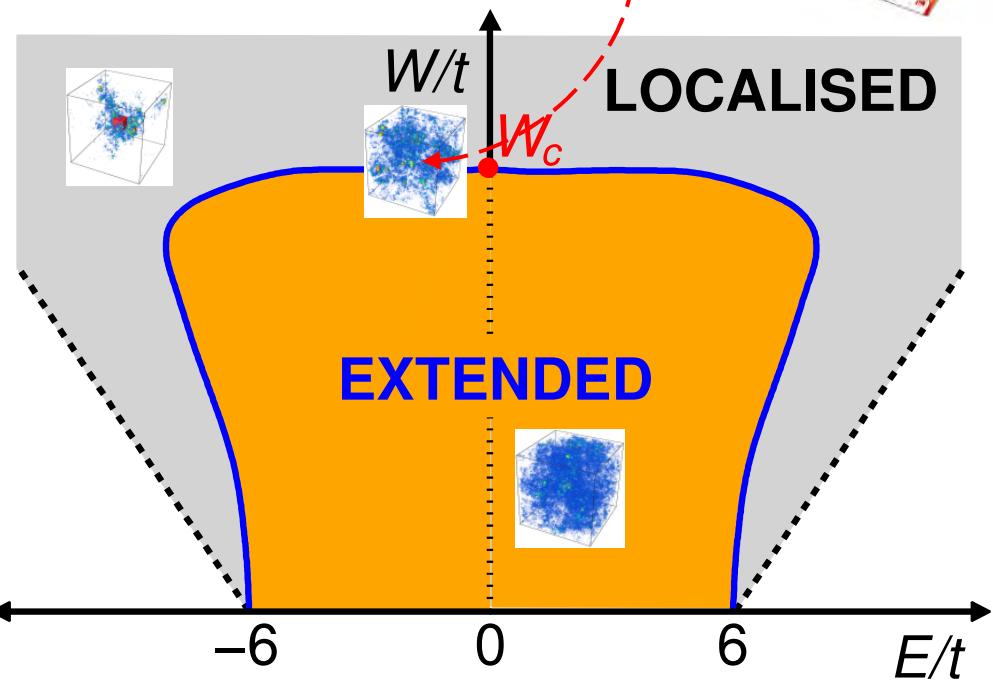


- Divergent localization length



$\xi \sim |X - X_c|^{-\nu}$
 with $X = E$ or W
 ν = critical exponent
 $\nu = 1.590(579,602)$
 [Slevin+Ohtsuki, PRL 82, 382 (1999)]

- Phase diagram in 3D



Spectral measures for Anderson localization in variants of the “standard model”

Flat bands, quasi-periodic electron models and many-body interactions

RA Römer, and many others (see later citations ...)

$$H = \sum_r \varepsilon_r |r\rangle\langle r| - \sum_{\langle r \neq r' \rangle} t_{r,r'} |r\rangle\langle r'|$$

STROM, Nov 2025

Works published in Flat bands:

[203, 197] + [194] "Unconventional delocalization in a family of 3D Lieb lattices", J. Liu, C. Danieli, J. Zhong, RAR, Phys. Rev. B **106**, 214204 (2022)+ [186,182,180]

[\[warwick.ac.uk/rudoroemer/publications\]](http://warwick.ac.uk/rudoroemer/publications)

WARWICK
THE UNIVERSITY OF WARWICK

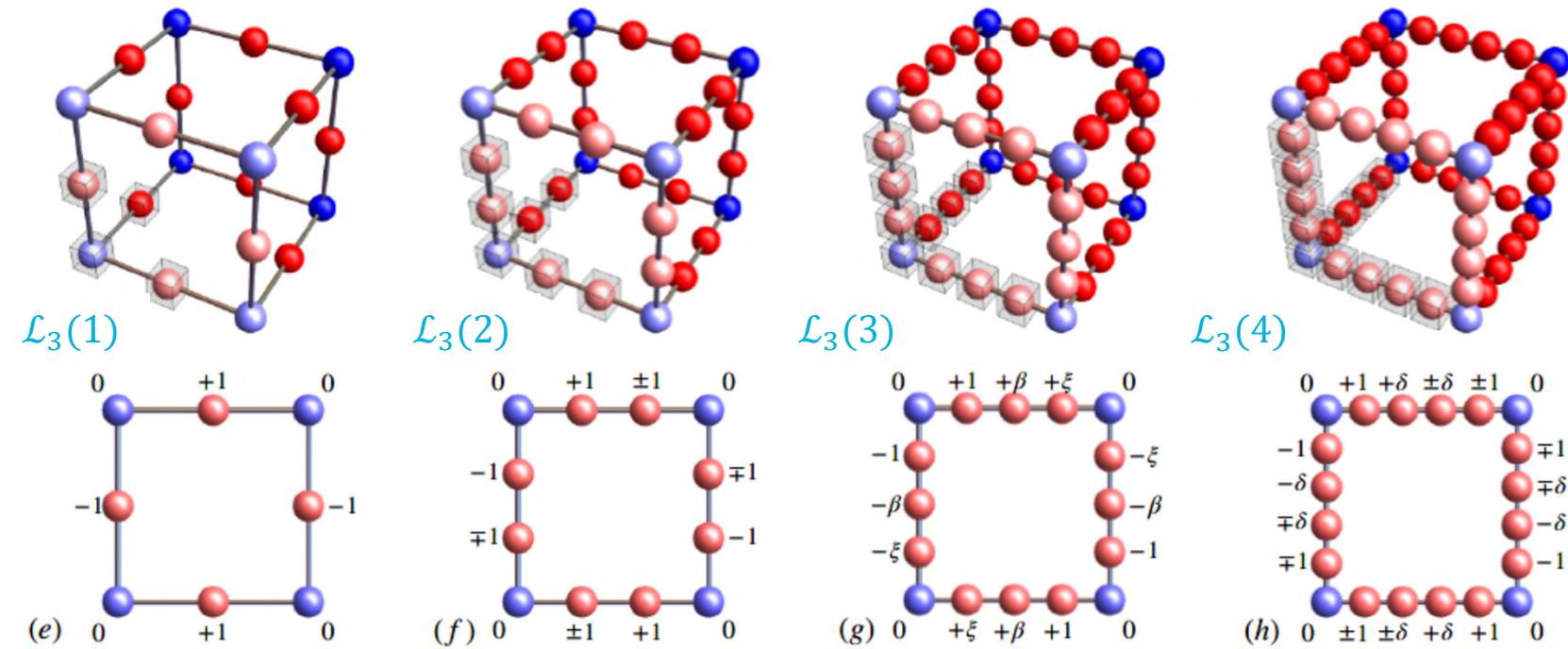
Quasi-periodic AB tiling:

[189] "The GOE ensemble for quasiperiodic tilings without unfolding: r-value statistics", U. Grimm, RAR, Phys. Rev. B **104**(6), L060201 (2021); [20] "Level Spacings Distributions of Planar Quasiperiodic Tight-Binding Models", J. X. Zhong, U. Grimm, RAR, M. Schreiber, Phys. Rev. Lett. **80**, 3996-3999 (1998).

Many-body and disorder:

[200] "Spectral and Entanglement Properties of the Random Exchange Heisenberg Chain", Y. Gao, RAR, Phys. Rev. B **111**, 104202 (2025)

Compactly localized states (CLS) imply flat bands (Ex: Lieb models)



$$E_{\text{CLS}} = 0$$

$$E_{\text{CLS}} = \pm 1$$

$$E_{\text{CLS}} = \beta = 0, \pm \sqrt{2},$$

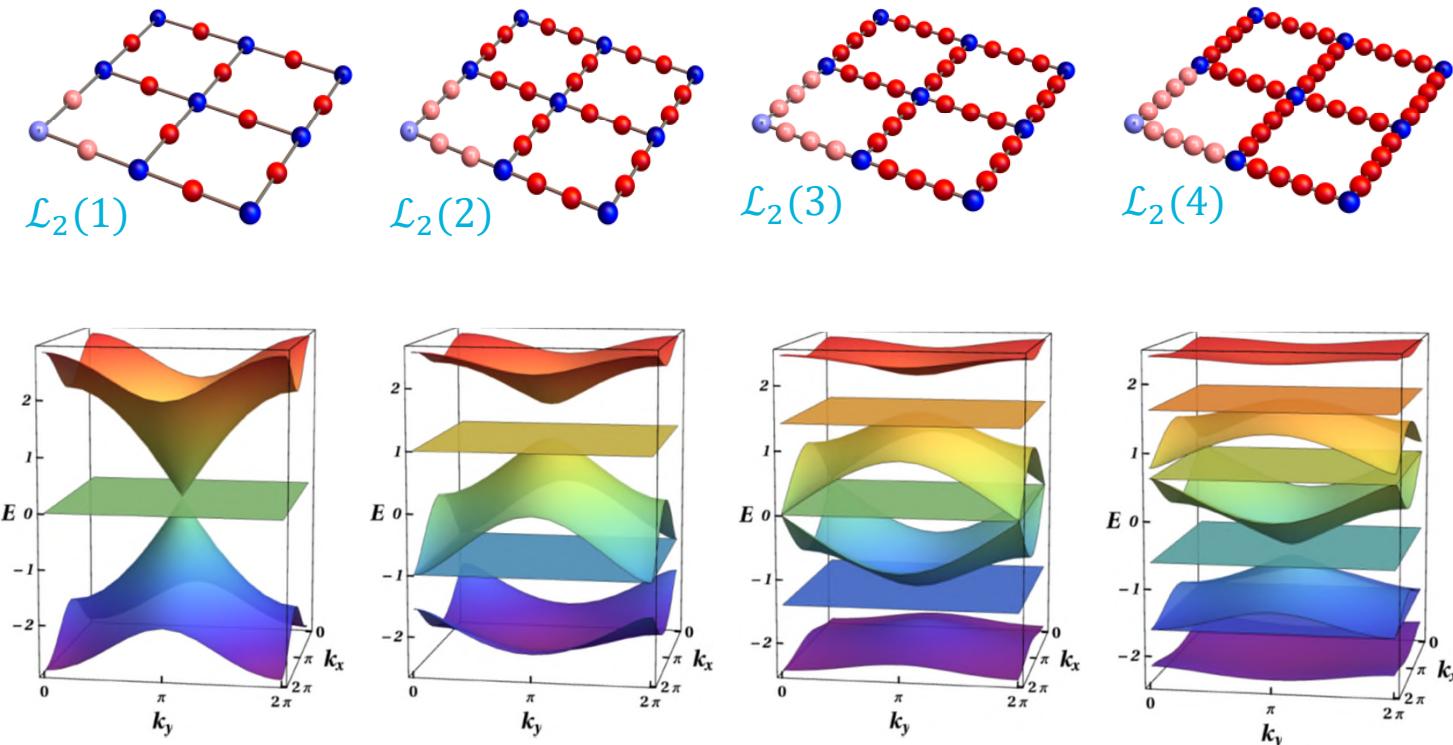
$$\xi = 1, \text{ for } \beta = \pm \sqrt{2},$$

$$\xi = -1, \text{ for } \beta = 0,$$

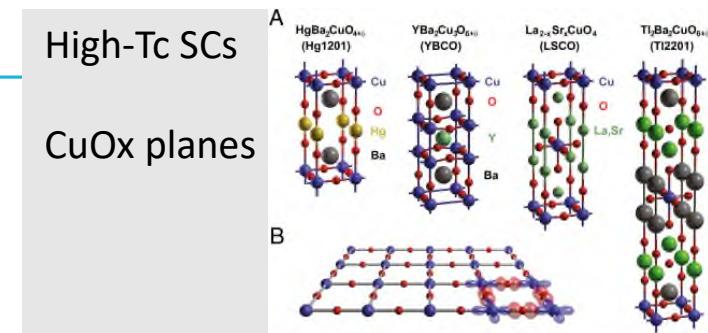
$$E_{\text{CLS}} = \pm \delta,$$

$$\delta = (1 \pm \sqrt{5})/2$$

Lieb model in 2D and its extensions, the clean case

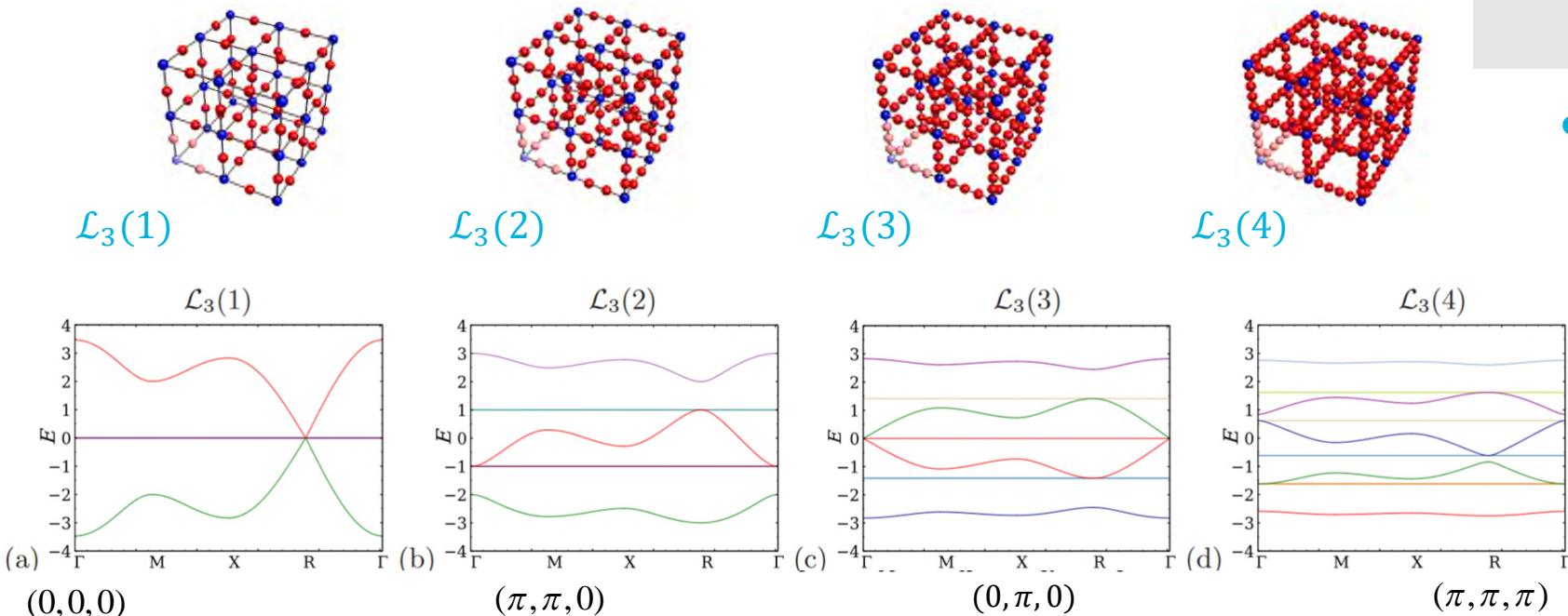


[also Da Zhang, Yiqi Zhang, Hua Zhong, Changbiao Li, Zhaoyang Zhang, Yanpeng Zhang, Milivoj R. Belić, “New edge-centered photonic square lattices with flat bands”, Annals of Physics **382** (2017), 160-169]

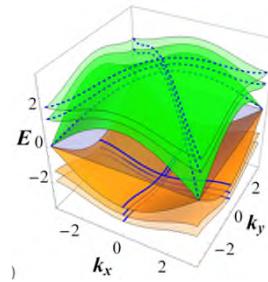


- $\mathcal{L}_2(n)$ exhibits
 - n flat bands and
 - $n + 1$ dispersive bands
- Simple “square lattice” structure makes it straightforward to study
- Ideal test case for flat band physics

Lieb model in 3D and its extensions, the clean case

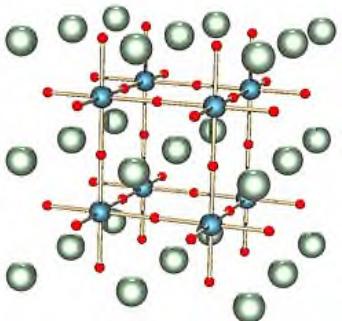


$$H = \sum_{\mathbf{r}} \varepsilon_{\mathbf{r}} |\mathbf{r}\rangle\langle\mathbf{r}| - \sum_{\langle\mathbf{r} \neq \mathbf{r}'\rangle} t_{\mathbf{r},\mathbf{r}'} |\mathbf{r}\rangle\langle\mathbf{r}'|$$



ABX₃ Perovskite

X = Lieb sites
B = cube sites
A = not present



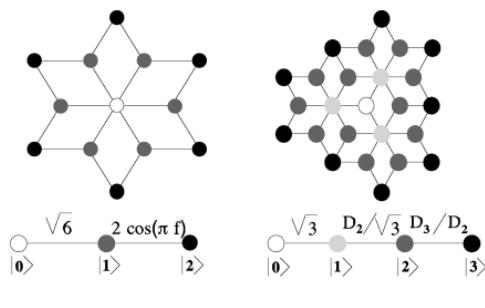
- $\mathcal{L}_3(n)$ exhibits
 - n flat bands and
 - $n + 1$ dispersive bands

Simple “square lattice” structure makes it straightforward to study

- Ideal test case for flat band physics in 3D

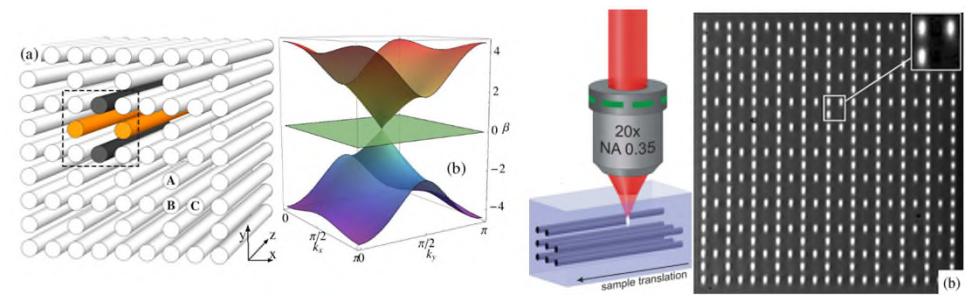
Further experimental realizations

Electronic flat band



- [1] J. Vidal et al., Phys. Rev. Lett. 81, 5888 (1998).
[2] C. C. Abilio et al., Phys. Rev. Lett. 83, 5102 (1999).

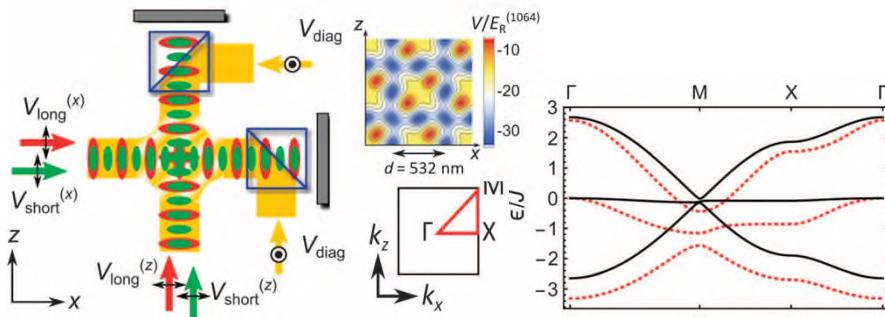
Photonic flat band



- [1] Guzmán-Silva, New J. Phys. 16, 063061 (2014).
[2] R. A. Vicencio et al., Phys. Rev. Lett. 114, 245503 (2015).
[3] S. Mukherjee et al., Phys. Rev. Lett. 114, 245504 (2015).

The first experiment: Superconducting wire network

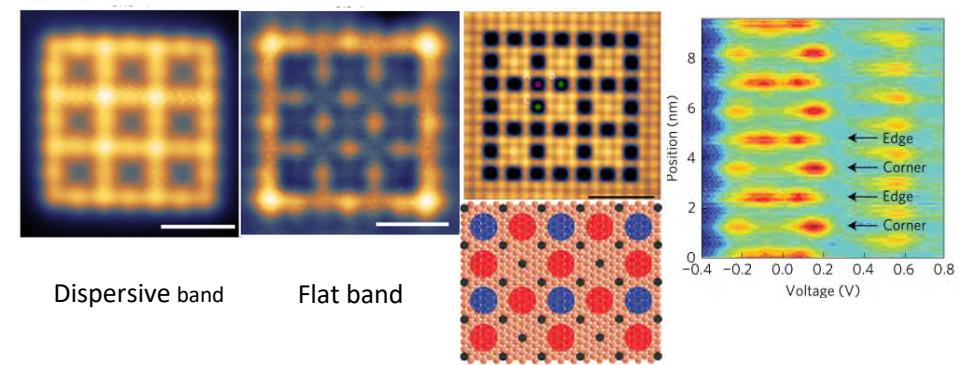
Ultra-cold atoms in an optical flat band



- [1] R. Shen, Phys. Rev. B 81, 041410 (2010).
[2] V. Apaja, Phys. Rev. A 82, 041402 (2010).
[3] S. Taie et al., Sci. Adv. 1, e1500854 (2015).

Atomic flat band

- [1] R. Drost et al., Nat. Phys. 13, 668 (2017).
[2] M. R. Slot et al., Nat. Phys. 13, 672 (2017).



STM for chlorine monolayer on a Cu(100) (surface)

The fate of the compactly-localized states (CLSs)

- **What happens in the presence of disorder?**

- 2D: [180] "Disorder effects in the two-dimensional Lieb lattice and its extensions", X. Mao, J. Liu, J. Zhong, RAR, *Physica E* 124, 114340 (2020)
- 3D: [182] "Localization, phases and transitions in the three-dimensional extended Lieb lattices", J. Liu, X. Mao, J. Zhong, RAR, *Phys. Rev. B* 102, 174207 (2020)

- **What happens for CLS-preserving disorder?**

- [194] "Unconventional delocalization in a family of 3D Lieb lattices", J. Liu, C. Danieli, J. Zhong, RAR *Phys. Rev. B* **106**, 214204 (2022)

- **Can we engineer CLS-preserving "Lieb meta-materials"?**

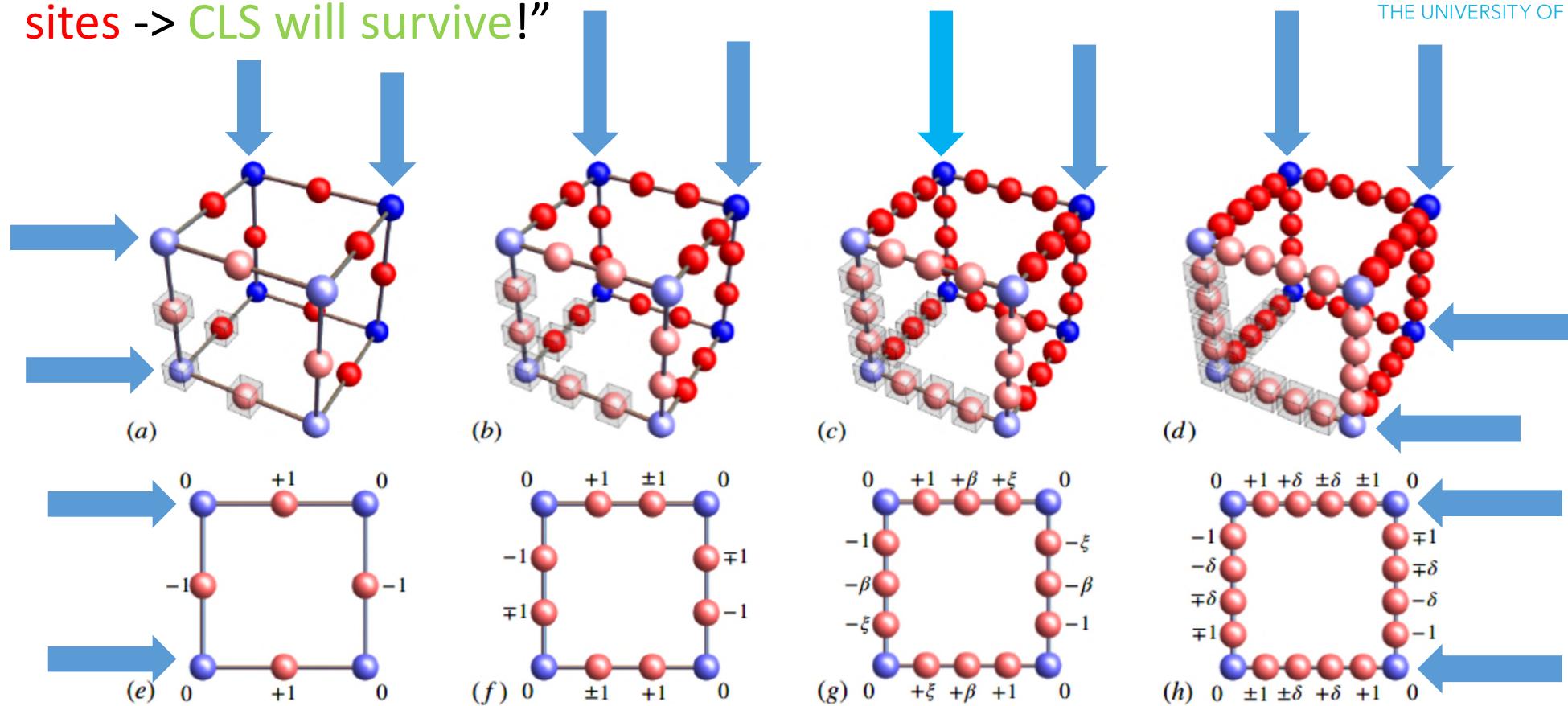
- [197] "Quantum engineering for compactly localized states in disordered Lieb lattices", C. Danieli, J. Liu, RAR, *Eur. Phys. J. B* 97, [128](#) (2024), arXiv:2309.04227

- **How to load, store and read-out quantum states via CLSs?**

- Current work: C. Danieli, J. Liu, RAR, **R. A. Vicencio**, <https://doi.org/10.48550/arXiv.2508.01846>

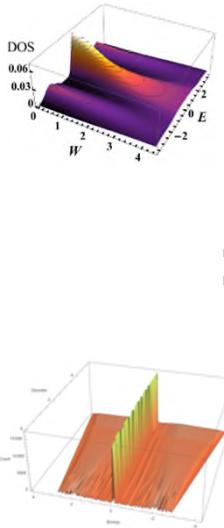
CLS-preserving disorder?

- special disorder at cube sites only, no disorder at Lieb sites -> **CLS will survive!**"



Extended Lieb models in 2 and 3D with CLS-preserving disorder

- DOS

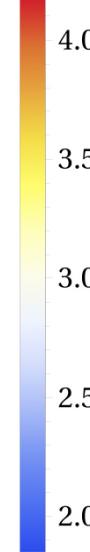


$\mathcal{L}_2(1)$

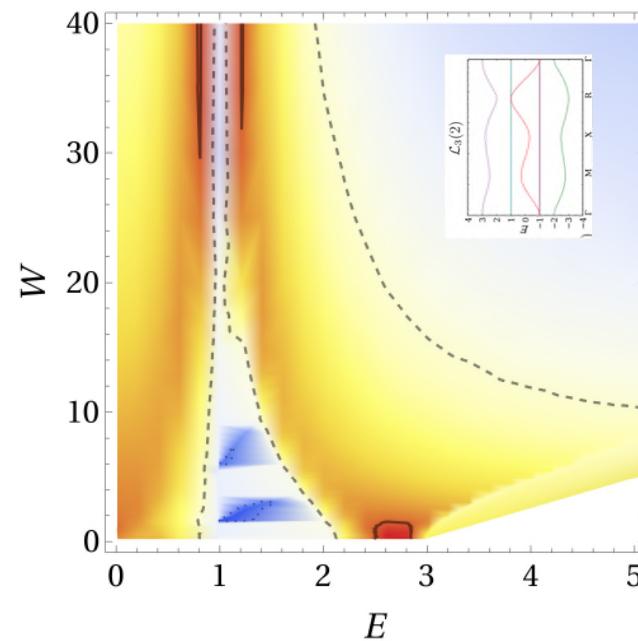
- TMM:

- much harder since effectively less disorder on renormalized sites, hence harder to converge
- How to compute modified phase diagrams for CLS-preserving disorder?

$\text{Log}_{10}(\text{DOS})$

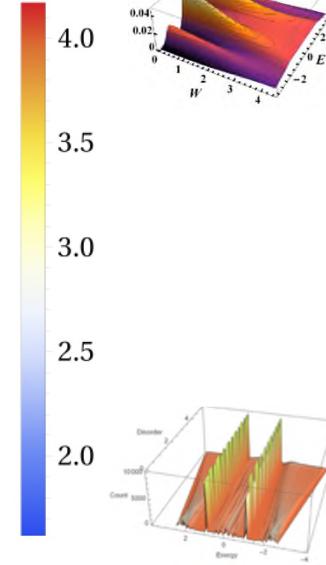


$\mathcal{L}_2(2)$



$\text{Log}_{10}(\text{DOS})$

$\text{Log}_{10}(\text{DOS})$



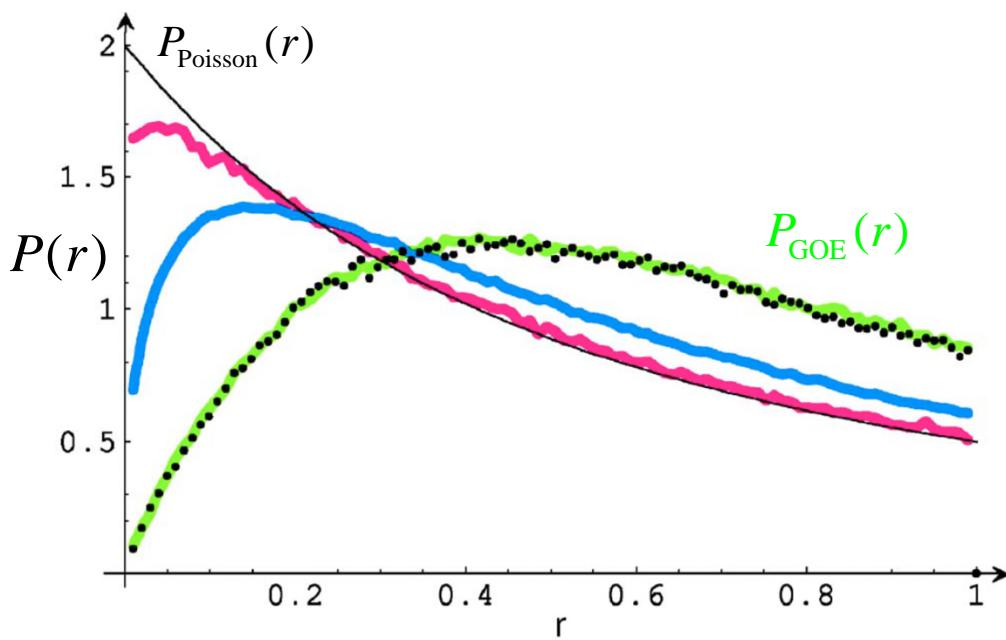
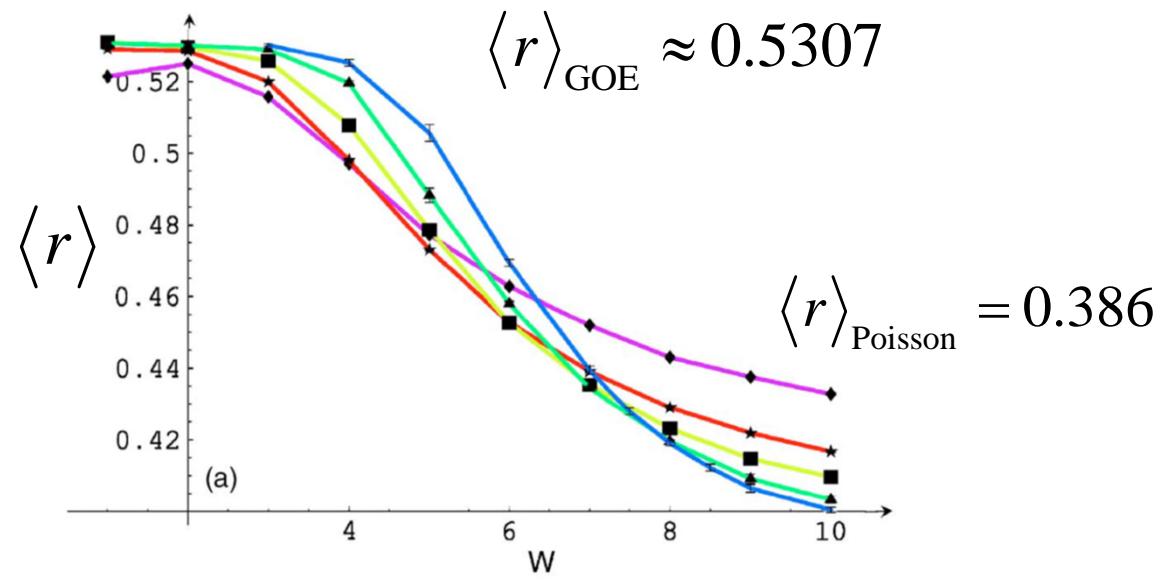
Energy-level ratio statistics (without unfolding)

V. Oganesyan and D. A. Huse, Phys. Rev. B **75**, (2007):

$$0 \leq r_n = \min\{s_n, s_{n-1}\} / \max\{s_n, s_{n-1}\} \leq 1$$

$$(s_n = E_n - E_{n-1})$$

mean : $\langle r \rangle = \int_0^1 P(r) r \, d r$

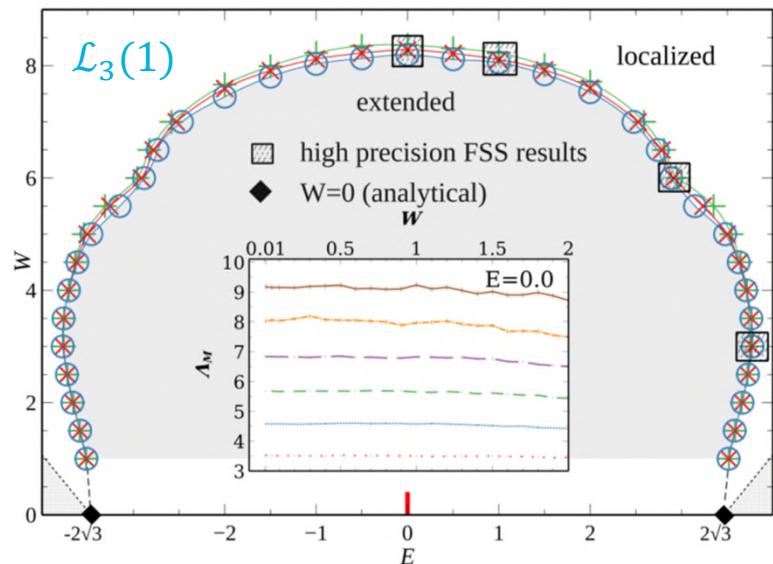


Does it work? Testing for the full disorder, equal on cube and Lieb

WARWICK
THE UNIVERSITY OF WARWICK

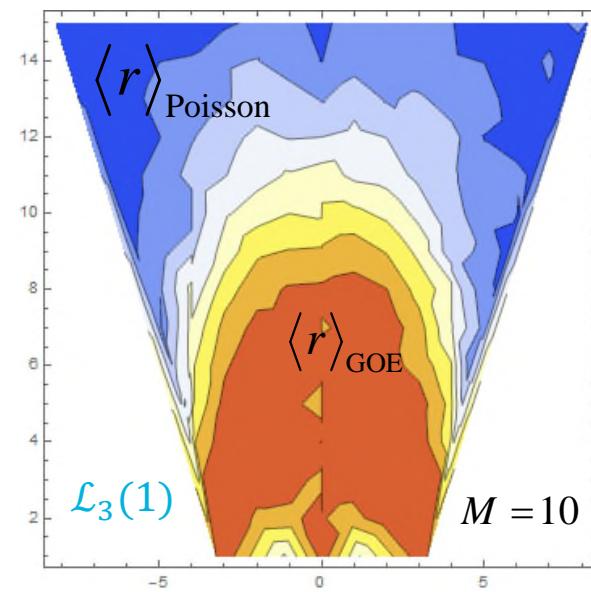
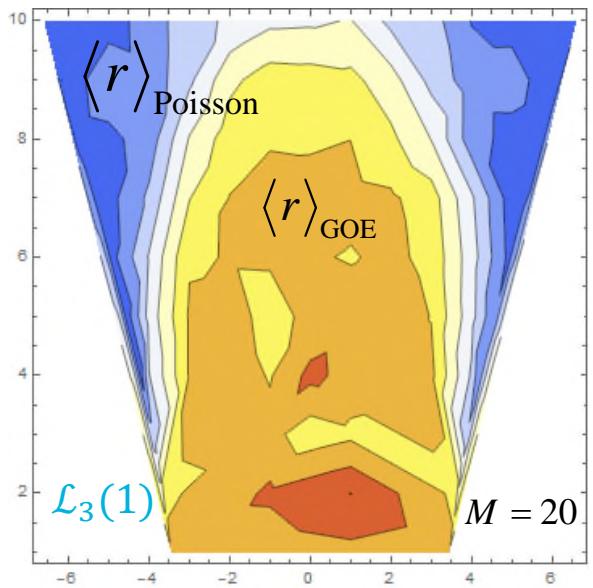
- TMM:

- Phase boundaries determined from scaling behavior with small $M^2 = 6^2, 8^2, 10^2 = 36, 64, 100$ (with 99% target accuracy)

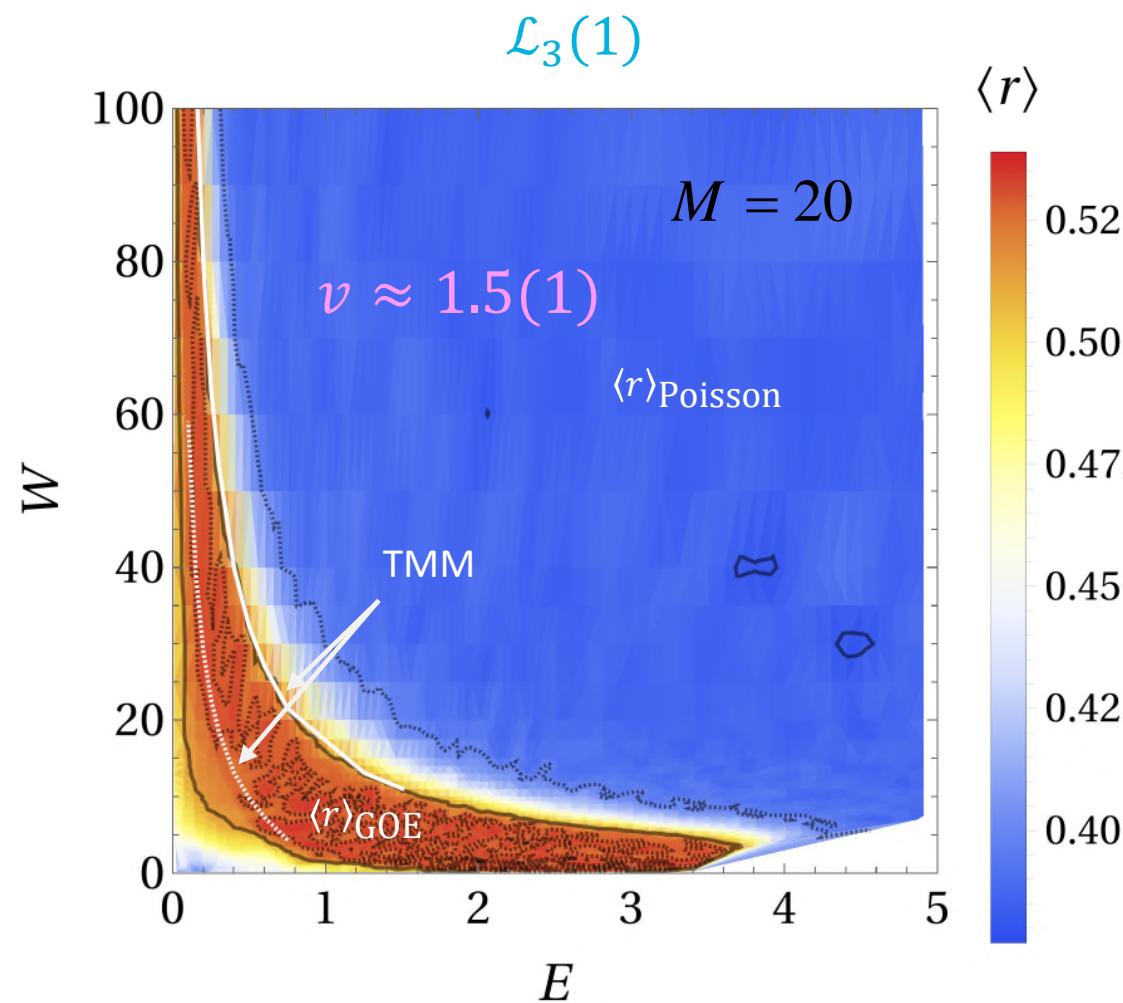
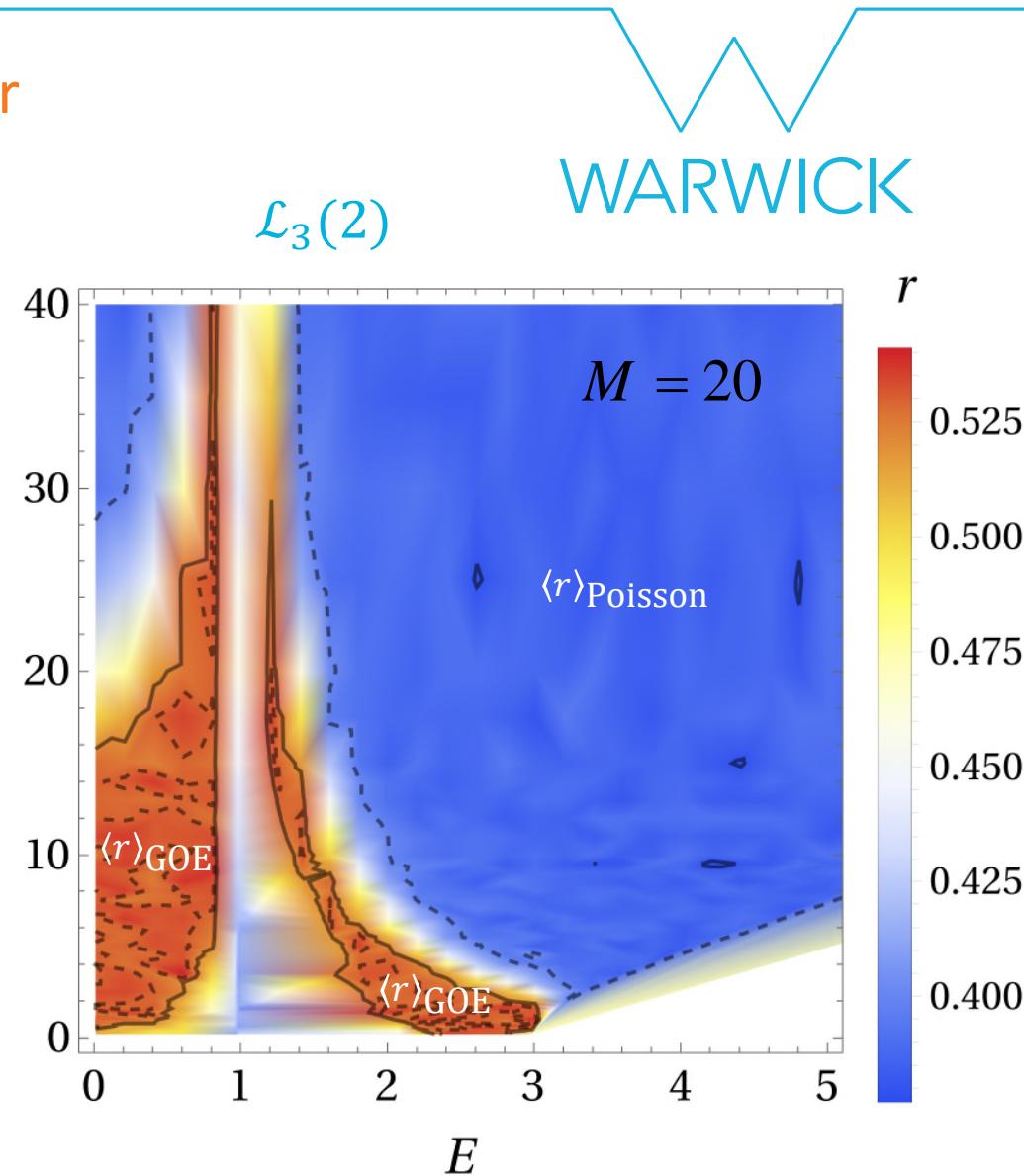


- Sparse-diagonalization

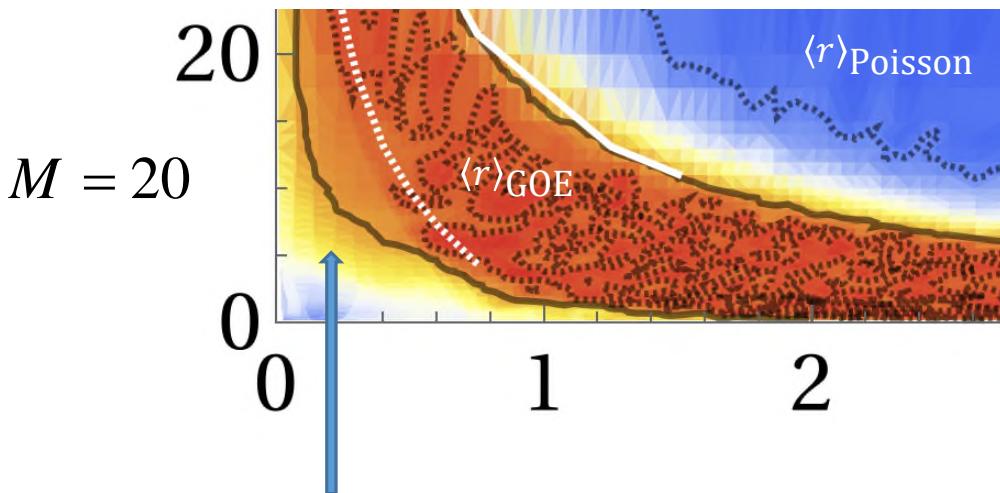
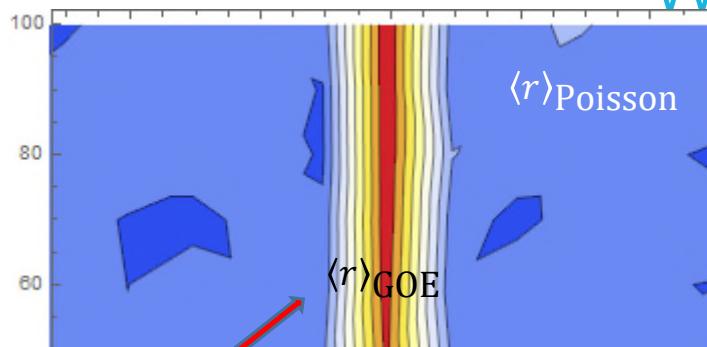
- Phase boundaries determined from $\langle r \rangle$ for $M^3 = 10^3, 20^3$, i.e. sites $N = (3 \times 10)^3 = 27000, (3 \times 20)^3 = 216000$



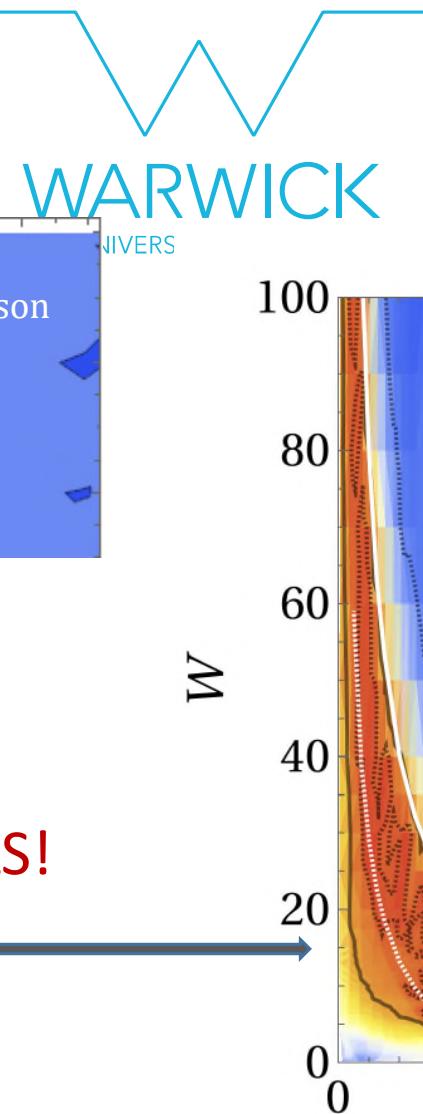
3D Lieb model with CLS-preserving disorder



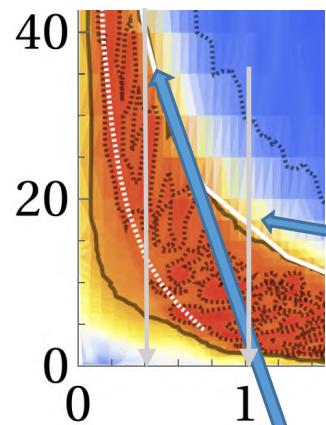
3D Lieb model with CLS-preserving disorder, 1st results



- “inverse” Anderson transition?
- CLS appear to show $\langle r \rangle$ values for GOE. Superposition of CLS!
- Non-CLS states delocalize close to FB energy $E=0$!?
- BORING? No more!

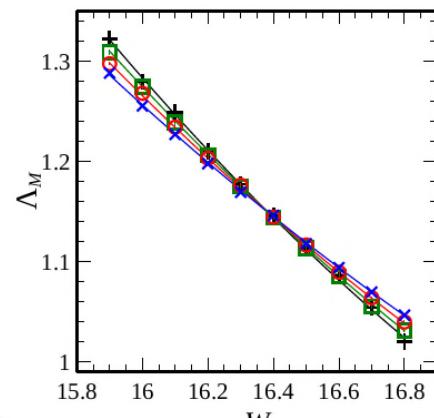
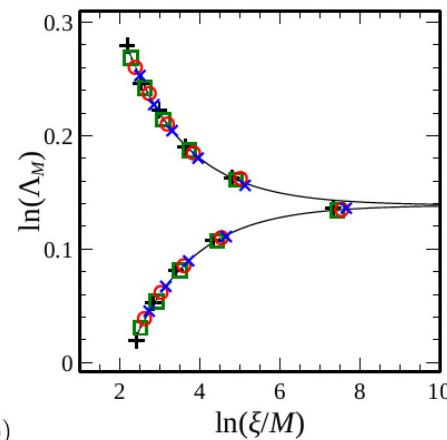
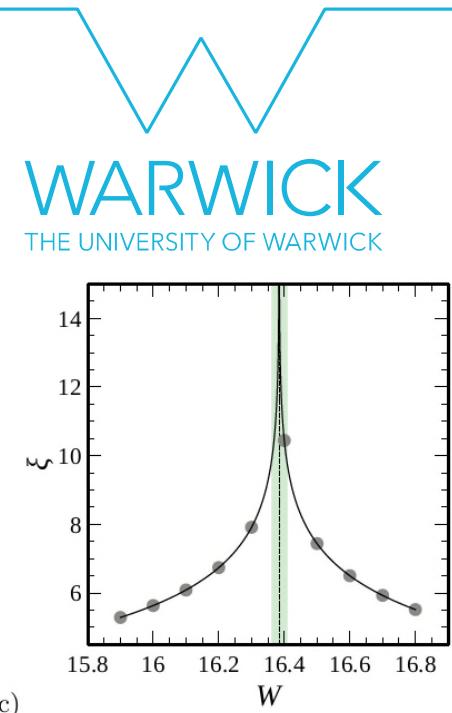
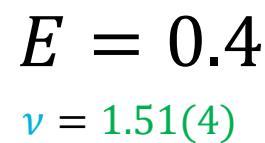
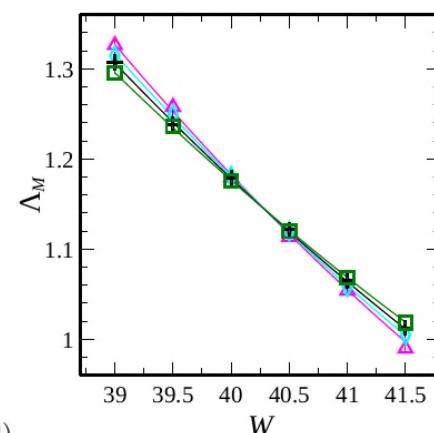
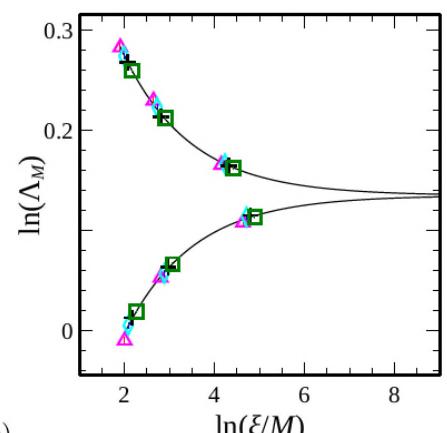
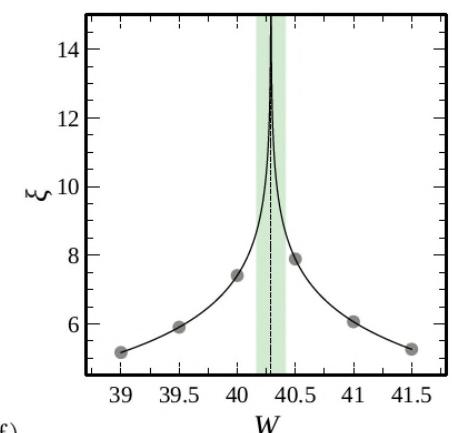


TMM:



$$E = 1$$

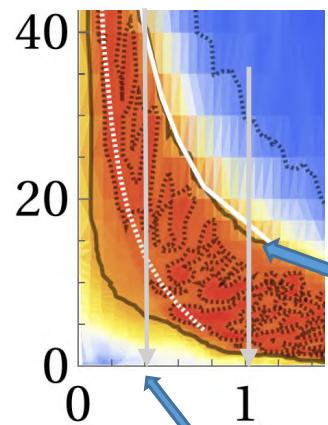
$$M^2 = 16^2 (< 0.1\%), 18^2, 20^2, \dots, 26^2 (< 0.5\%)$$



WARWICK
THE UNIVERSITY OF WARWICK

$\langle r \rangle + \langle z \rangle$ -values:

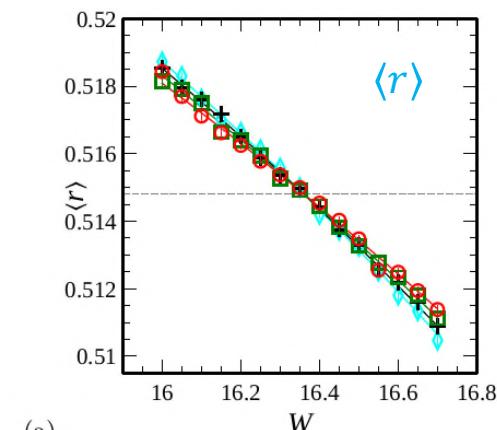
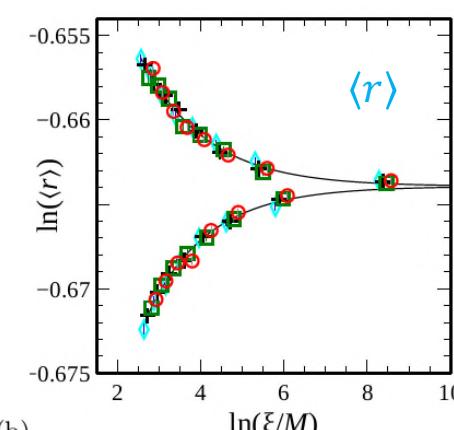
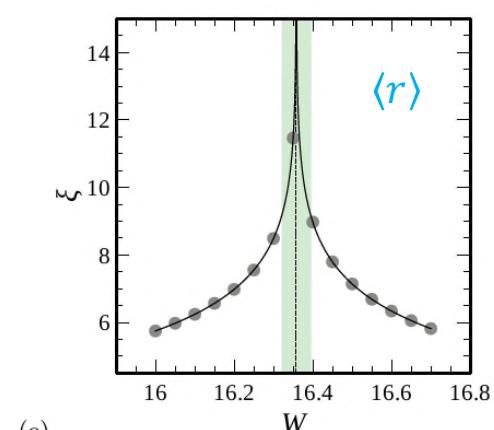
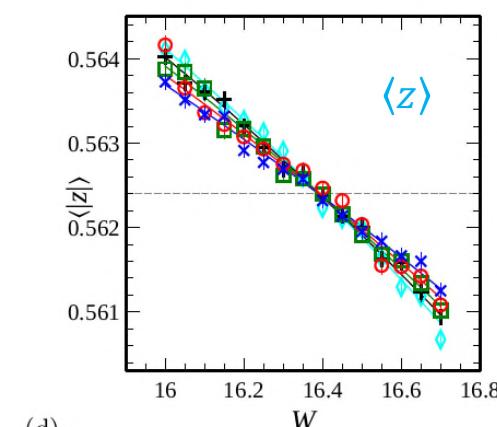
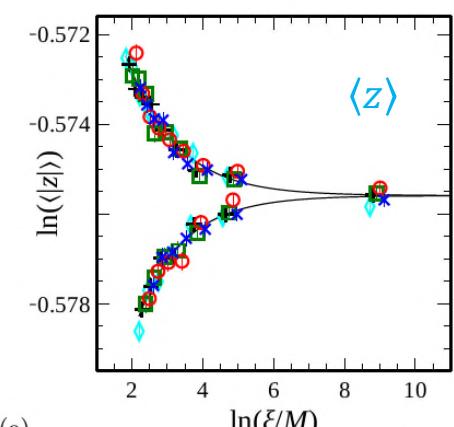
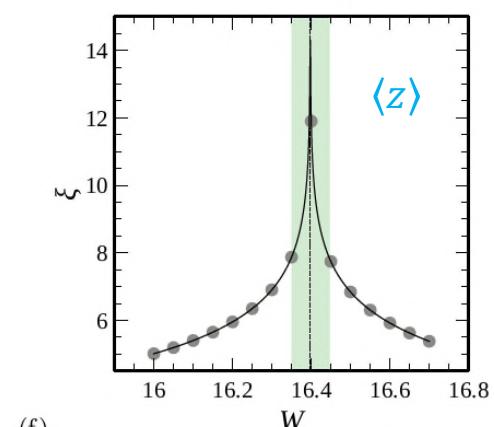
$N^3 = 16^3, 18^3, 20^3, \dots, 24^3, L = 4 \times N^3$
10000 samples for each disorder value



$$E = 1$$

$$\nu = 1.54(9)$$

$$|z_n| = \frac{|E_n - E_{NN}|}{|E_n - E_{NNN}|}$$



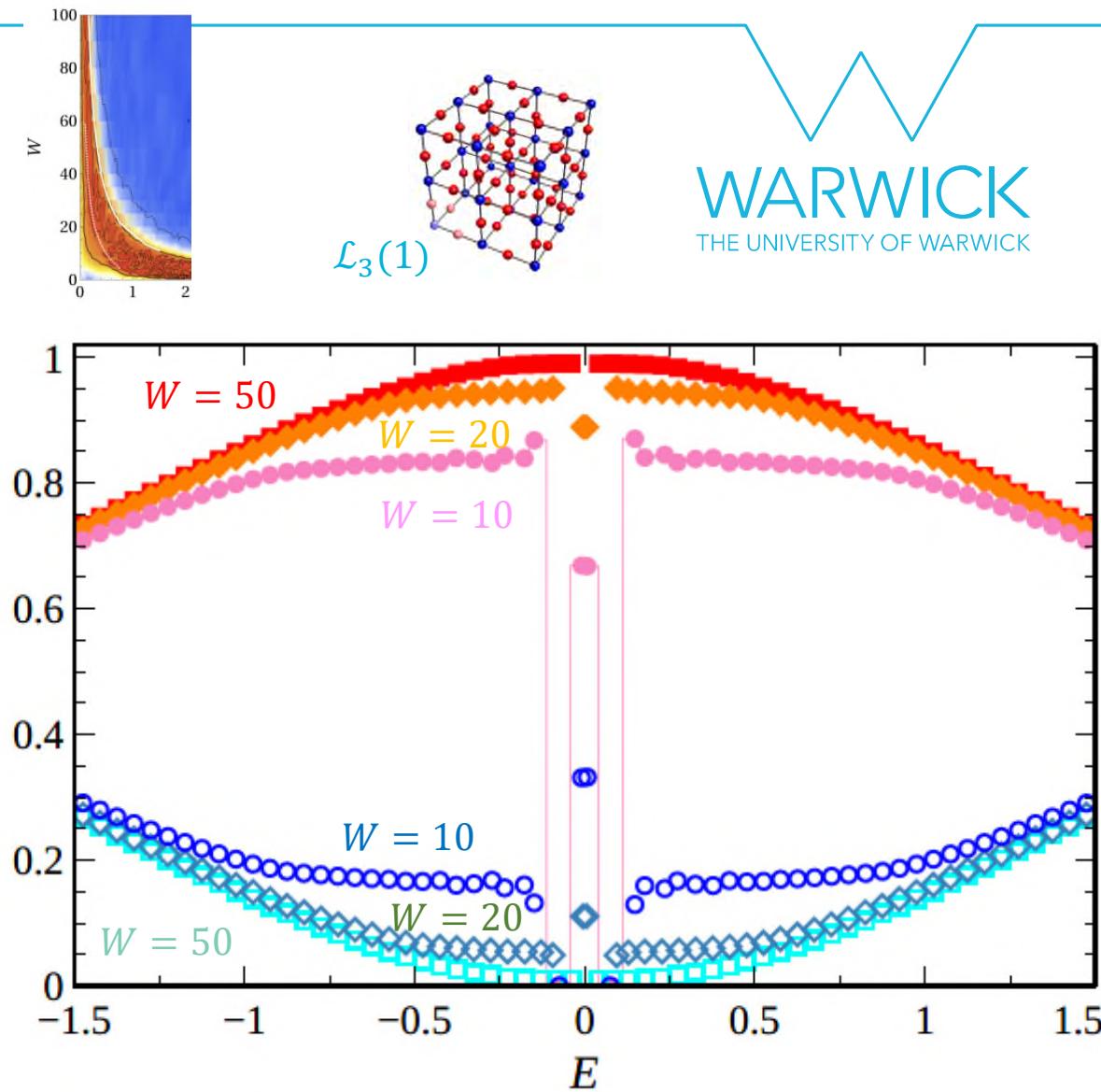
Enhancement of CLS stability

- Projected wave function

$$\sum_{\mathbf{r} \in \text{all } N^3} |\psi_E(\mathbf{r})|^2 = 1$$

$$\sum_{\mathbf{r} \in \text{Lieb}} |\psi_E(\mathbf{r})|^2, \quad \sum_{\mathbf{r} \in \text{cube}} |\psi_E(\mathbf{r})|^2$$

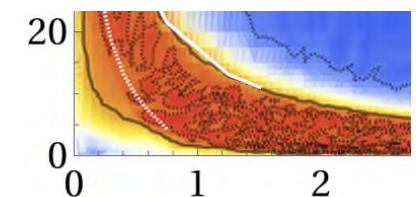
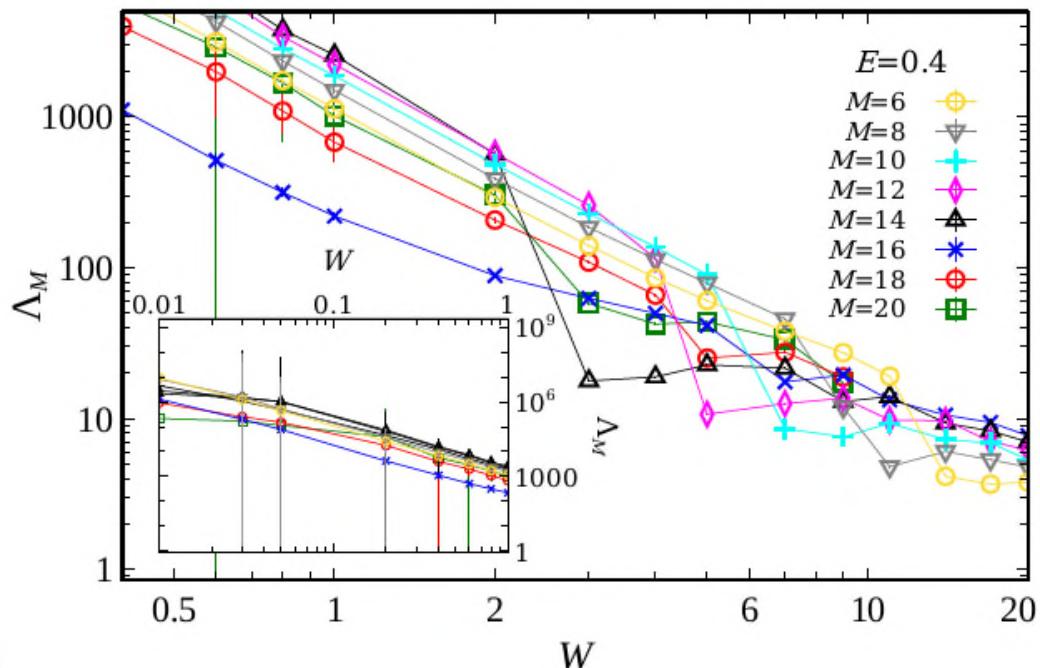
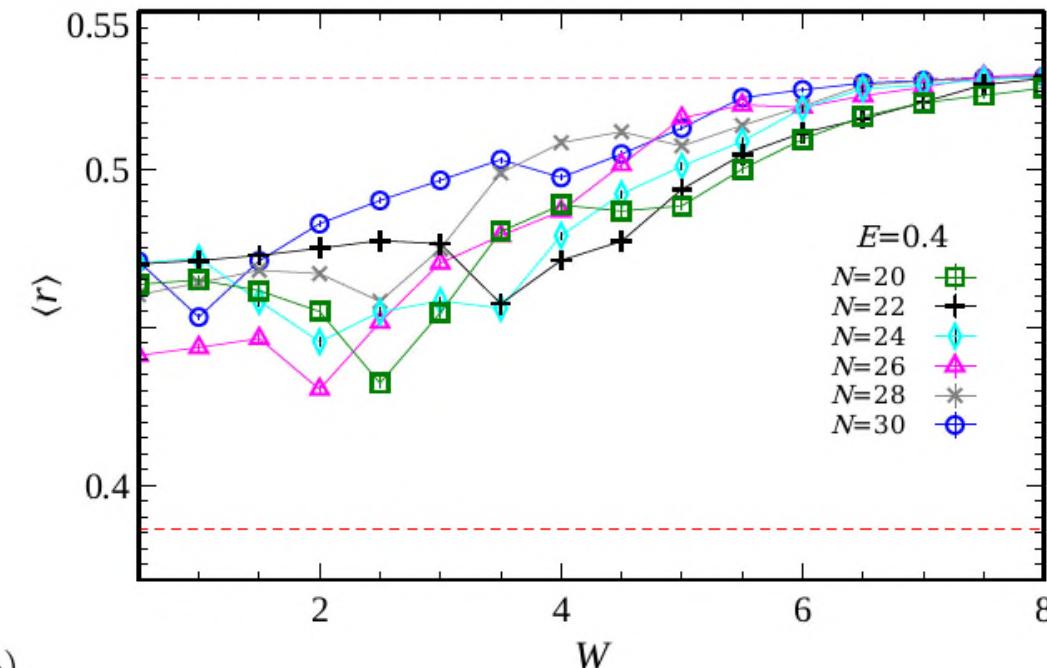
- Close to CLS at $E = 0$, disorder moves dispersive states
 - Towards $E = 0$ when on Lieb sites
 - Away from $E = 0$ when on cube sites



WARWICK
THE UNIVERSITY OF WARWICK

No “inverse Anderson” transition – something else

- TMM or ELS or wave functions (P) **cannot identify a single, system-size independent crossing point**
- So either our system sizes $M^2 \times \infty$ (TMM) up to $M = 20$ or N^3 (ELS, WF) are too small or **this is not a “transition”, but a more gentle crossover!**



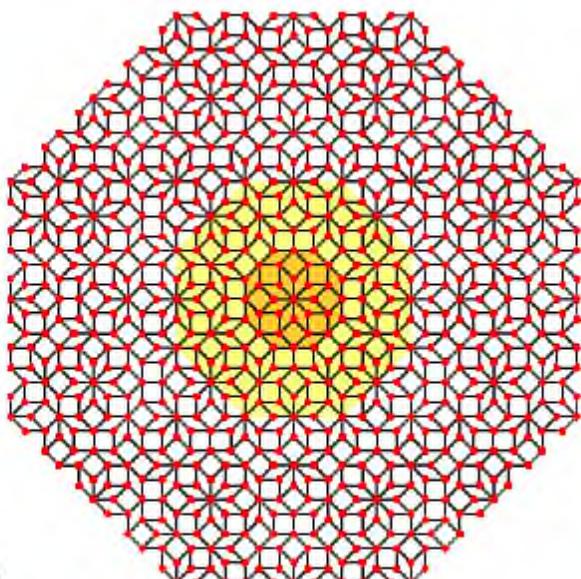
ELS for quasi-periodic tilings

- cover space without gaps or overlaps but never repeat exactly.
- local regularity with global aperiodicity
- wavefunctions shows scale-invariant fluctuations across the tiling.

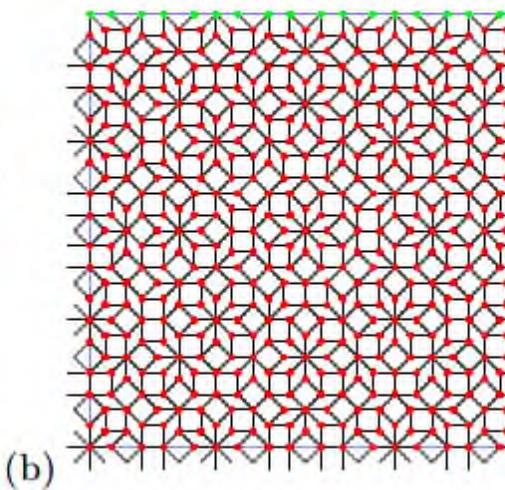
$$H = \sum_{\langle \mathbf{r} \neq \mathbf{r}' \rangle} t_{\mathbf{r}, \mathbf{r}'} |\mathbf{r}\rangle \langle \mathbf{r}'|$$

We studied Ammann-Beenker tilings up to 157369 vertices and tilings with random “phase” flips including up to up to 8358000 r -values.

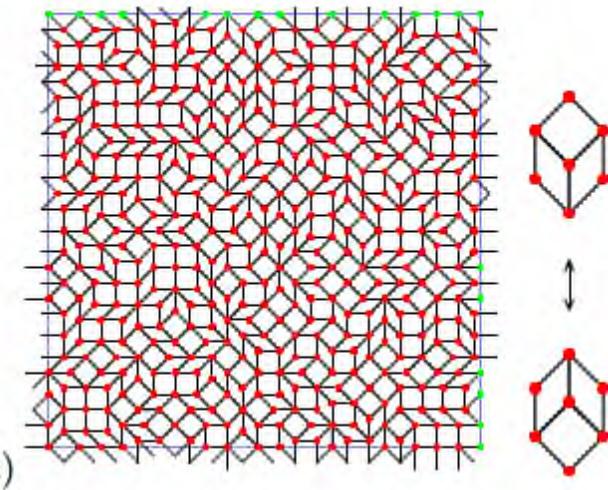
AB tiling, inflation 3



Periodic approximant
[cut-out square]

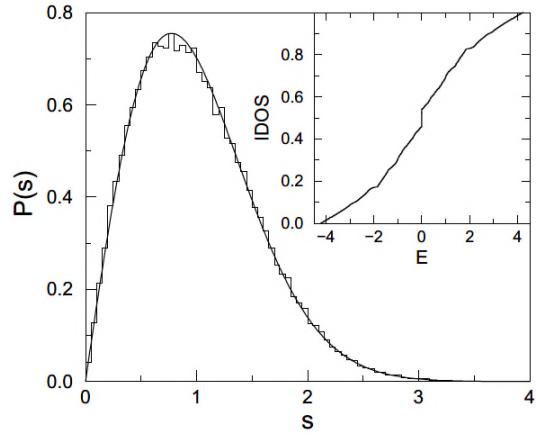
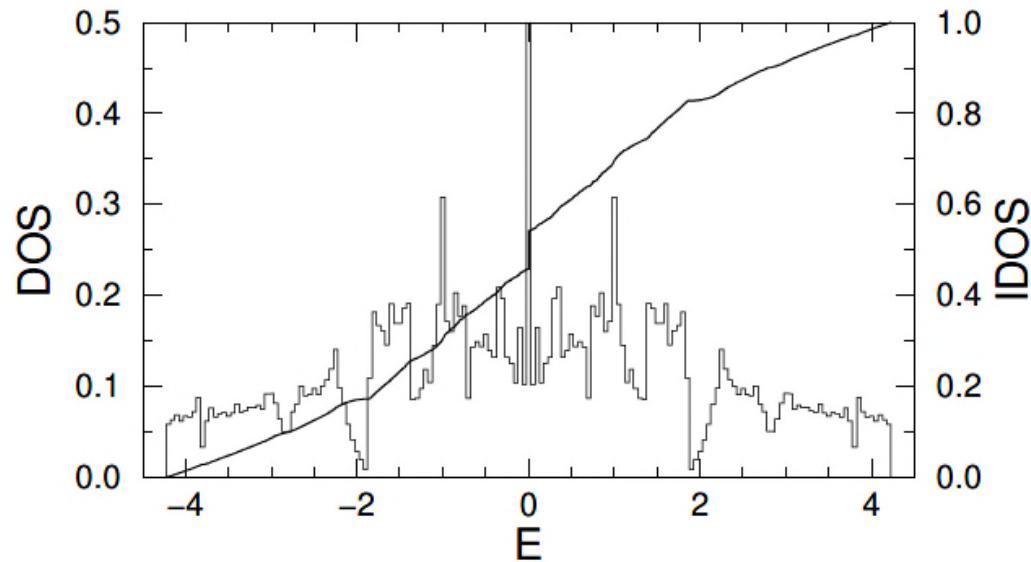
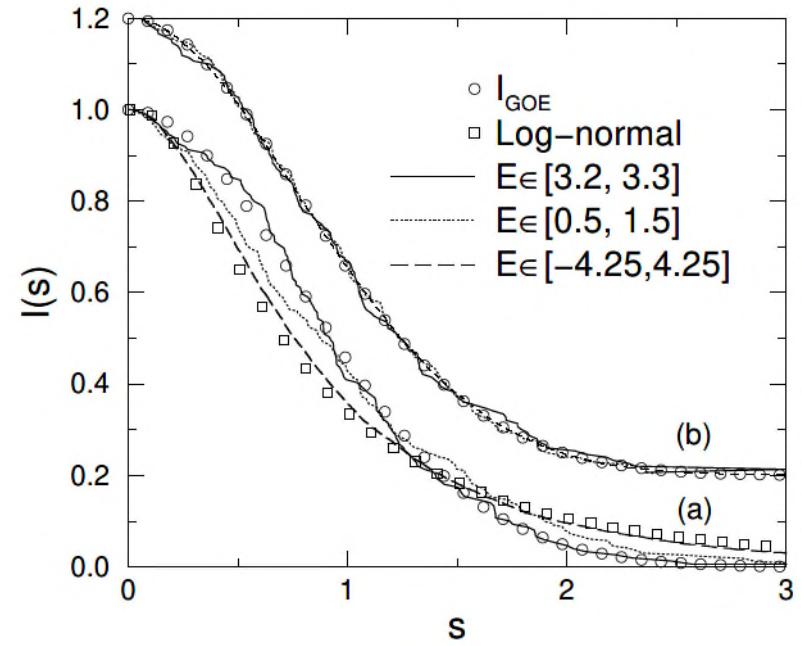


Phase-flipped AB
approximant



ELS for quasi-periodic tilings

- DOS is spiky, needs “unfolding”
- with unfolding, universal results are possible
- without unfolding, results are not expected to be universal
- we do unfolding”:



ELS is GOE

- when taking into account dihedral symmetry, then 7 independent sectors

- all sectors follow

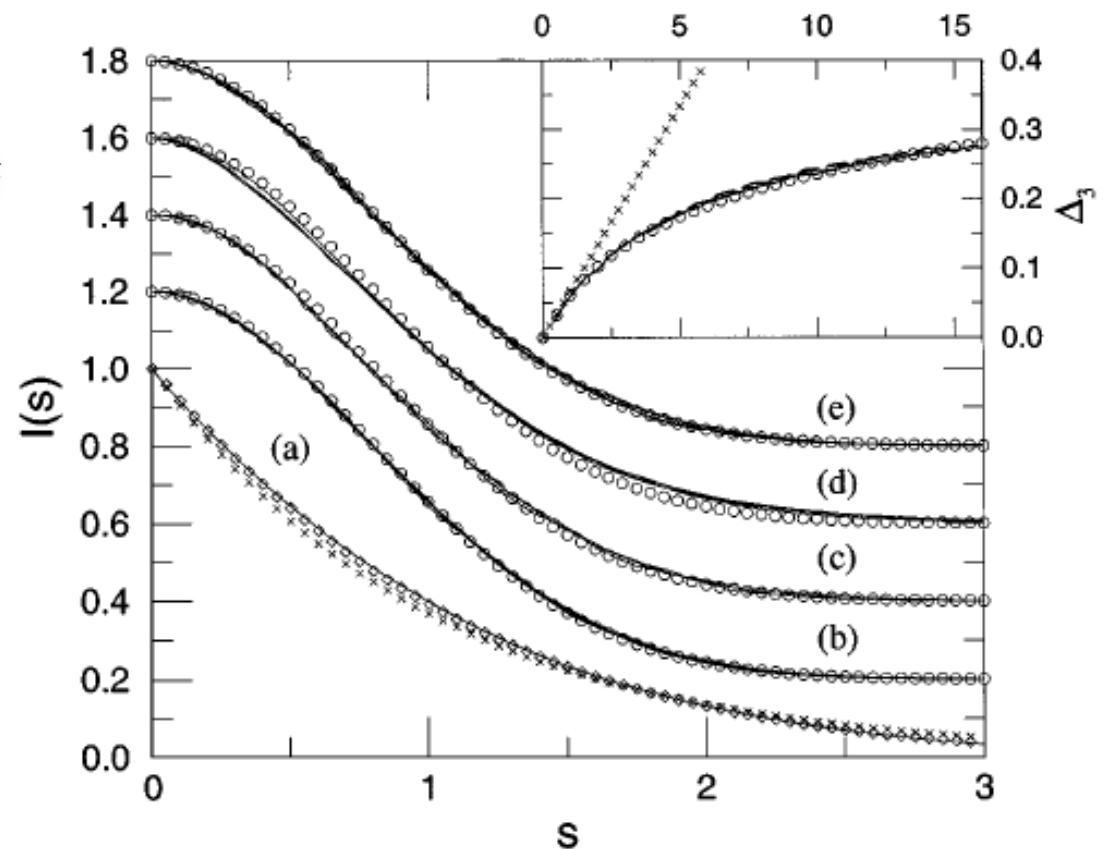
$$P_W^{(k)}(s) = \frac{d^2}{ds^2} \left[\operatorname{erfc} \left(\frac{\sqrt{\pi}}{2} \frac{s}{k} \right) \right]^k$$

- individual sectors follow

$$P_W(s) = \frac{\pi s}{2} \exp(-\pi s^2/4) \approx P_{GOE}(s)$$

- also works for other tilings and different “cuts” (Sinai-billiard shape) of AB tiling

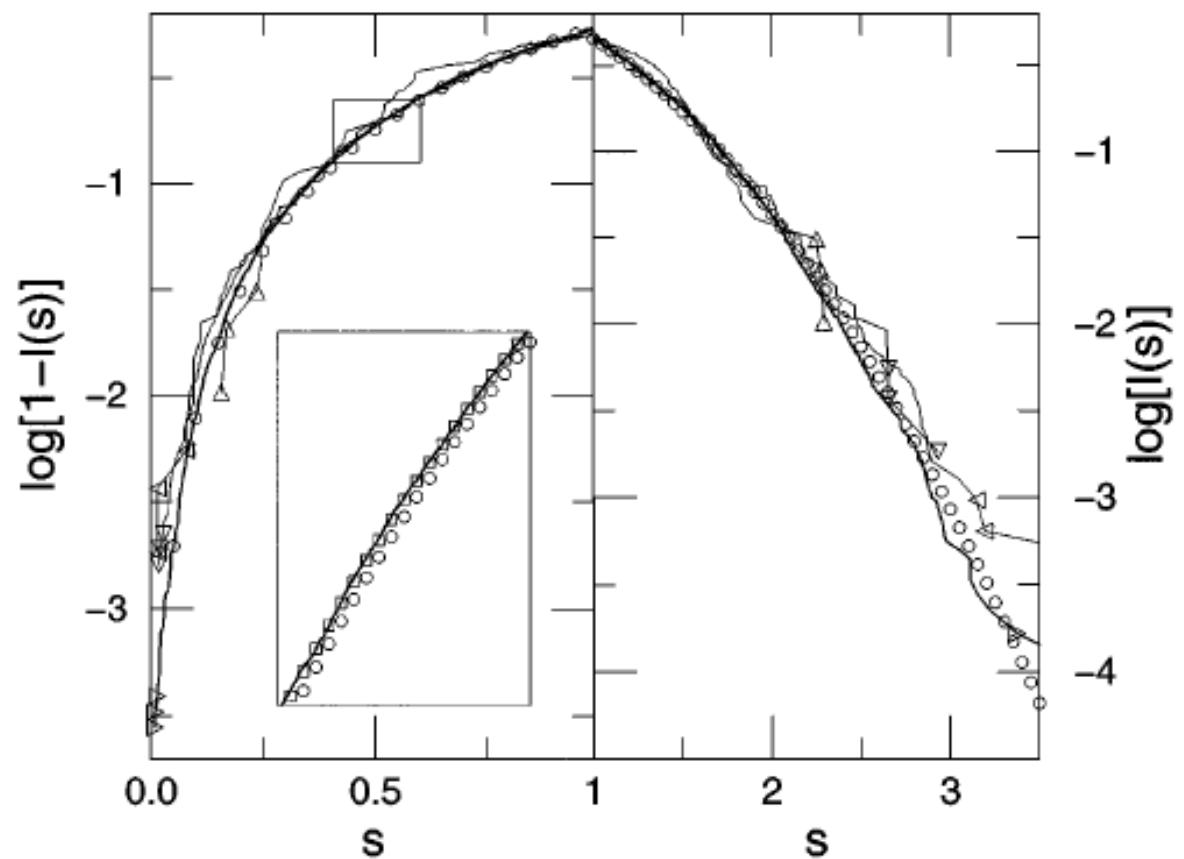
$$I(s) = \int_s^\infty P(t)dt$$



ELS is GOE, better than Wigner!

- in fact, GOE is followed even better than Wigner surmise
- see small- s and large- s behaviour for the largest patch of one irreducible sector
- not often that “disordered” systems using the “standard model” show this

J. X. Zhong, U. Grimm, RAR, M. Schreiber, Phys. Rev. Lett. 80, 3996-3999 (1998).



ELS is GOE in QP tilings

maybe unfolding did this (we checked already then)?

- no, using r -value statistics, i.e. without unfolding gives same result: GOE
- 4887638 r -values used

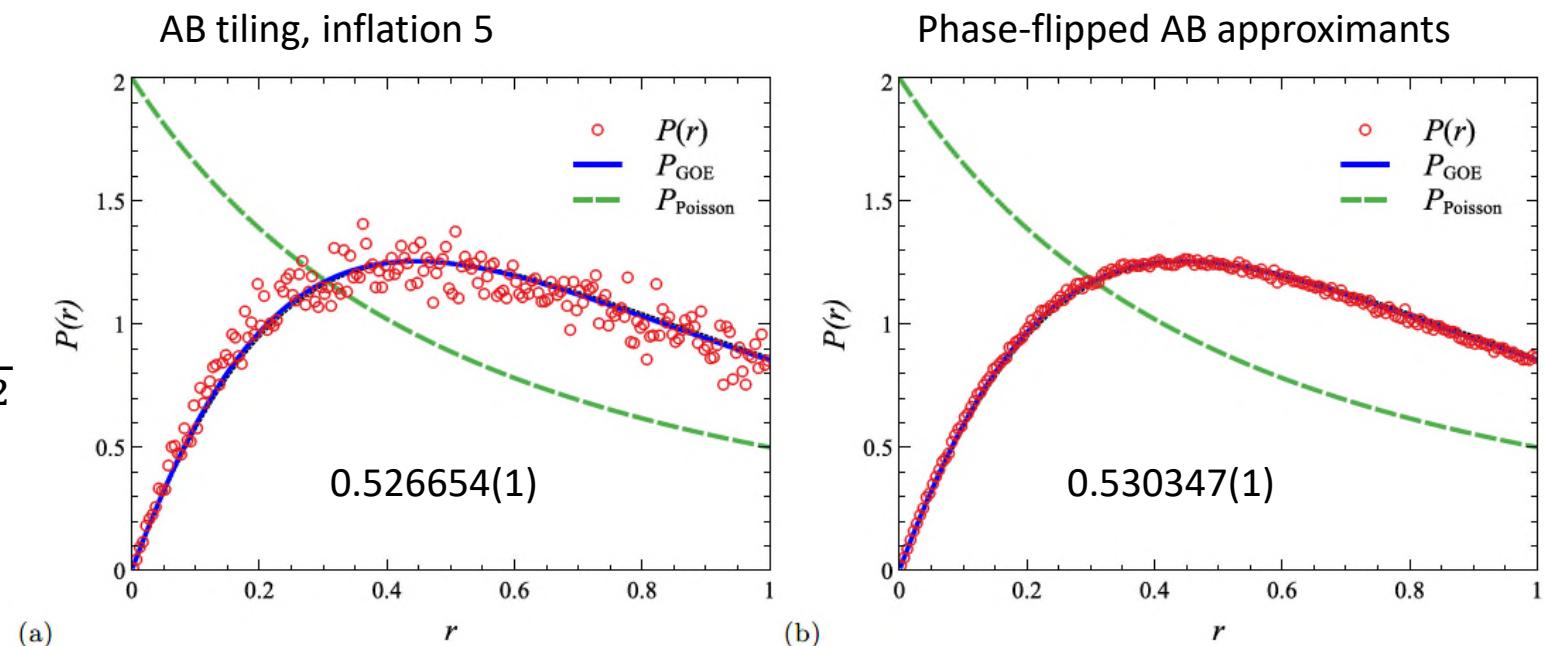
U. Grimm, RAR, Phys. Rev. B 104(6), L060201 (2021)

$$\langle r \rangle_{\text{GOE}} \approx 0.5307$$

$$\langle r \rangle_{\text{Poisson}} = 0.386$$

$$P_W(r) = \frac{27(r + r^2)}{4(1 + r + r^2)^{5/2}}$$

$$P_P(r) = \frac{2}{(1 + r)^2}$$

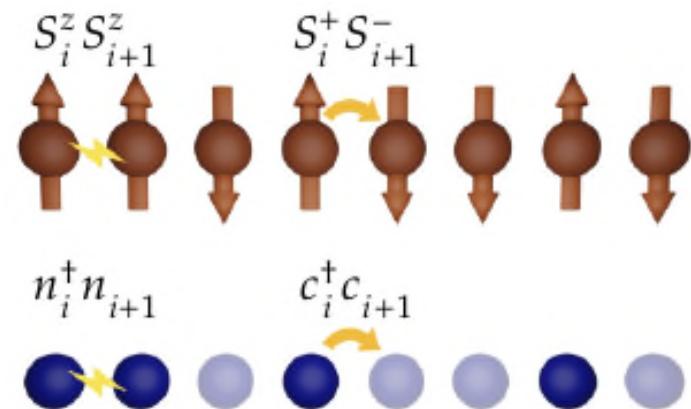


Interactions in the presence of disorder

- **Interactions** mix all the (Fock) states, leading to ergodicity
- **disorder** leads to **localized** states, can that be strong enough to prevent mixing, hence **absence of ergodicity**?
- we are interested in all states, so not just a ground state question
- poster child/model (1D):

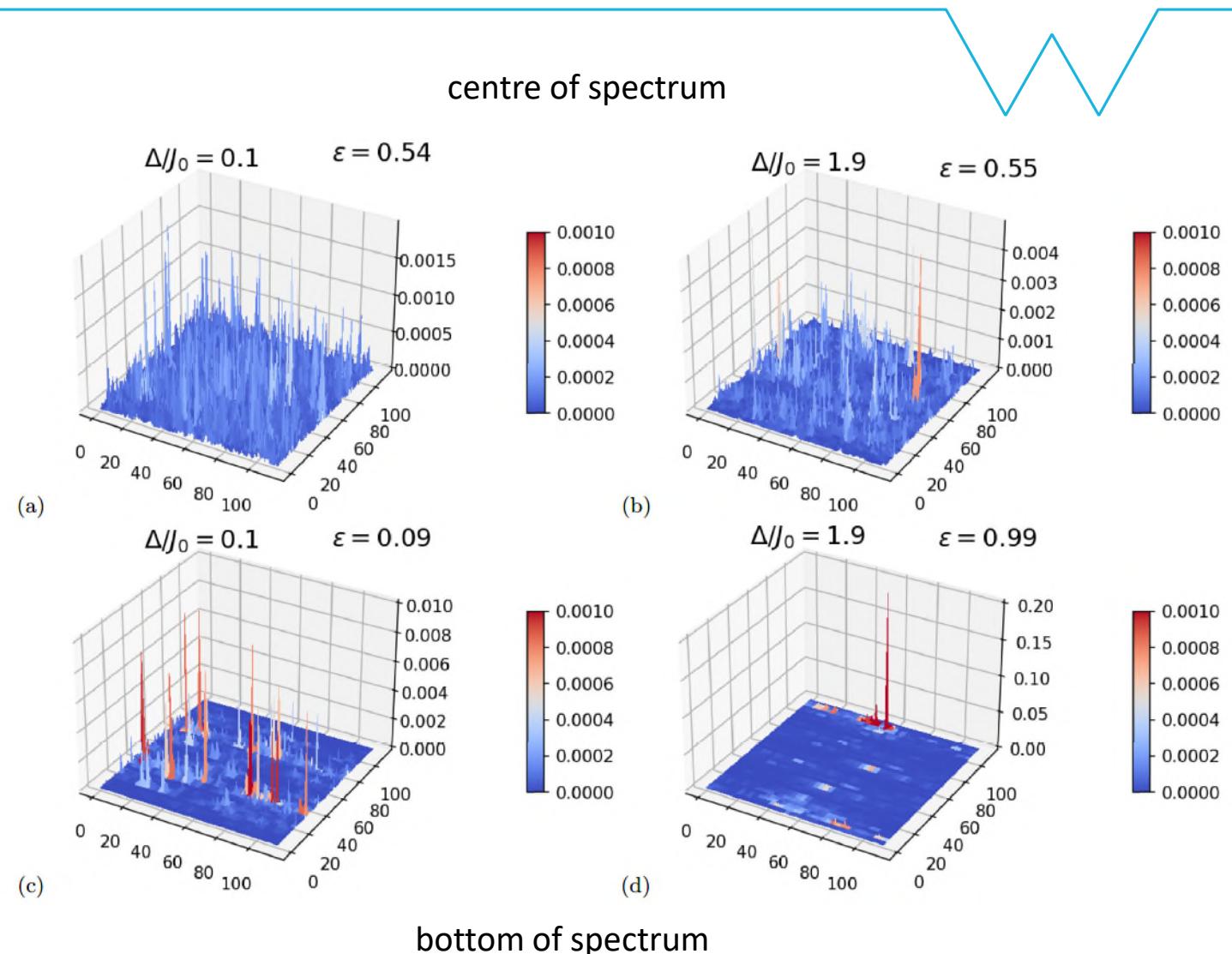
$$H = J \sum_{\langle ij \rangle}^L (S_i^x S_j^x + S_i^y S_j^y) + J_z \sum_{\langle ij \rangle}^L S_i^z S_j^z + \sum_i^L \mathbf{h}_i S_i^z$$

$$H = J \sum_{\langle ij \rangle} (c_i^\dagger c_j + h.c.) + J_z \sum_{\langle ij \rangle} n_i n_j + \sum_i \mathbf{h}_i n_i$$



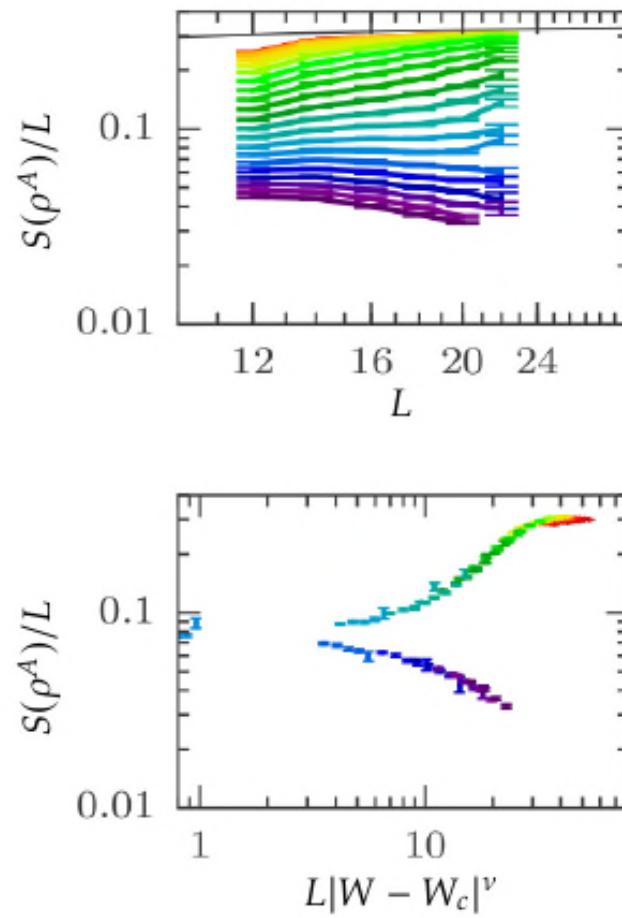
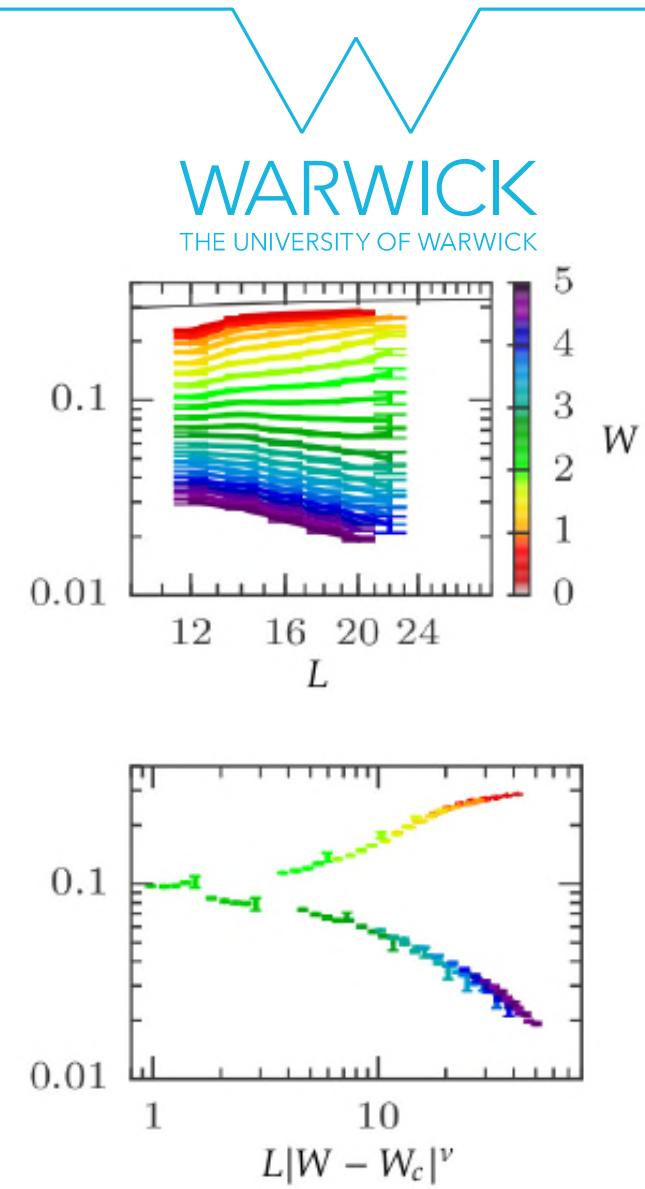
A picture of MLB:

- $L=16$, 12870 states in Fock space (in $m=0$ sector)
- roughly equal to $12996=144^2$
- increasing the disorder leads to less Fock states contributing to eigenstate \rightarrow Fock-space localization



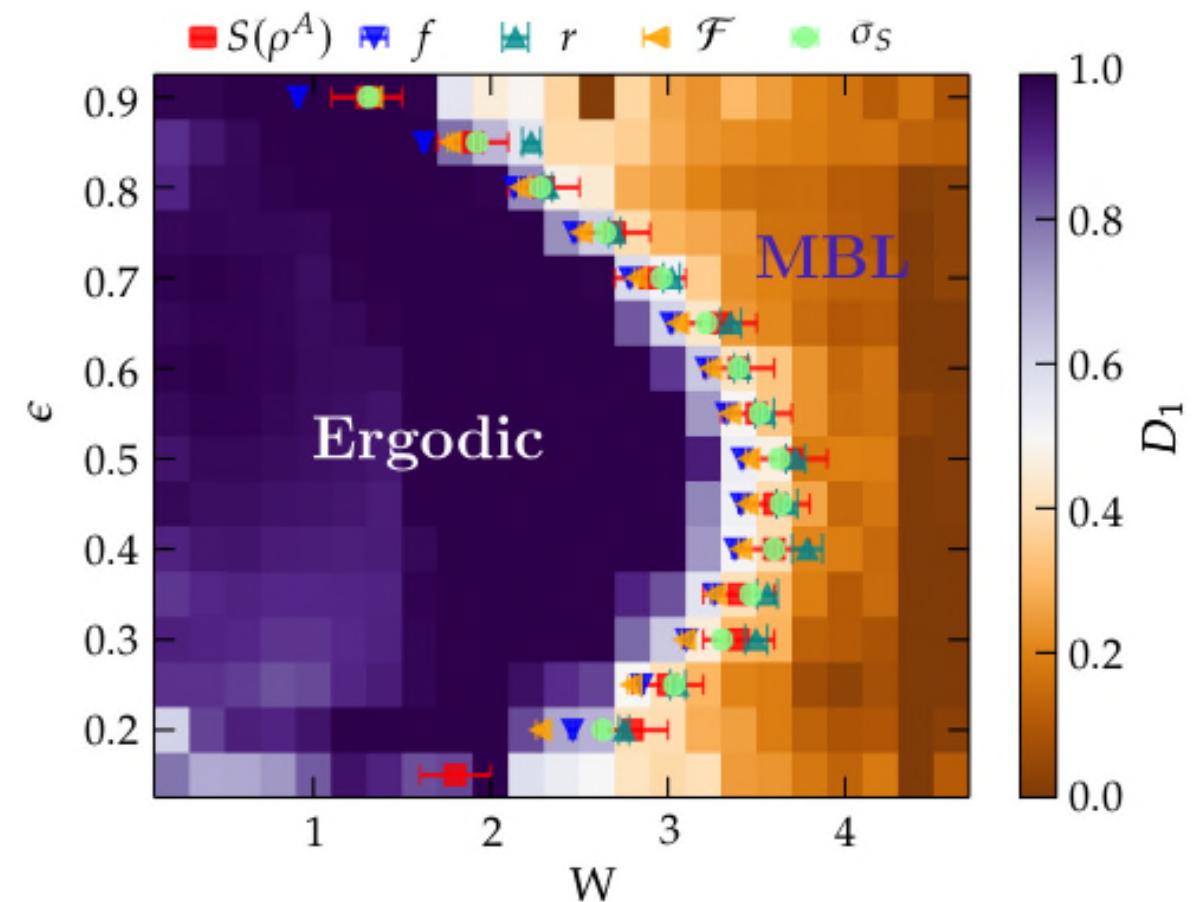
Finite-Size Scaling hints at a transition:

- Luitz, D. J., N. Laflorencie, and F. Alet (2015). “Many-body localization edge in the random-field Heisenberg chain”. In: *Physical Review B* 91.8, p. 81103.



Even a full phase diagram can be computed:

- entanglement-based measure
- Fidelity-based measures
- r-value
- MBL = many-body localization



Interactions in the presence of disorder

$$H = \sum_{\langle ij \rangle}^L J_{ij} (S_i^x S_j^x + S_i^y S_j^y) + 1 \sum_{\langle ij \rangle} S_i^z S_j^z$$

$$H = \sum_{\langle ij \rangle}^L J_{ij} (c_i^+ c_j^- + h.c.) + 1 \sum_{\langle ij \rangle} n_i n_j$$

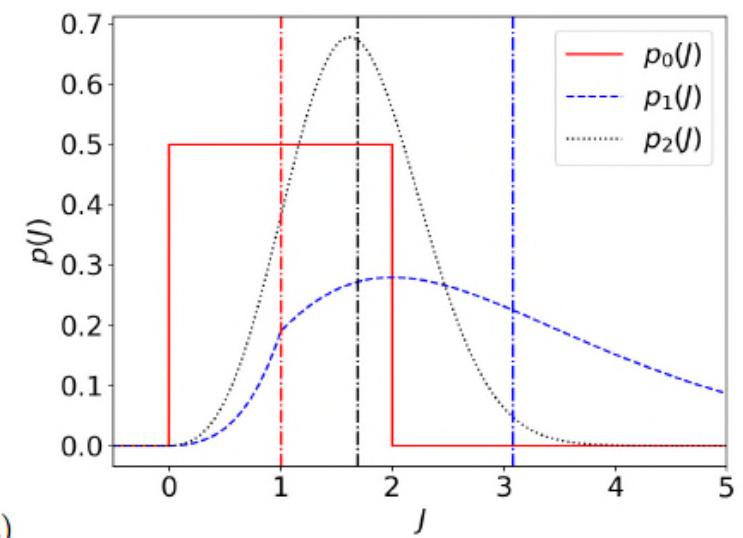
- random exchange model, retains full SU(2) symmetry
- Vasseur et al. [PRB 93, 134207 (2016)] **report transition** from ergodic states to MBL states at strong disorders.
- Protopopov et al. [PRX 10, 011025 (2020)] find **states intermediate** between extended states and MBL states even at strong disorders, i.e. **no MBL transition**
- Siegl and Schliemann (level statistics) argue [NJP 25, 123002 (2023)] **for transition** from ergodic phase to a **phase that is different** from both ergodic and MBL
- Saraidaris et al. [PRB 109, 094201 (2024)] suggest that thermalization and **delocalization appear** at large system sizes, $L = 48$, using tDMRG
- Han et al. [arXiv:2411.09368] found **no evidence of an MBL transition** studying the time and disorder dependence of multifractal exponents

-> a complicated model!

- **ground state properties** real-space renormalize to random singlet phase with increasing disorder:

Ma, Dasgupta, Hu, PRL 43, 1434 (1979); Dasgupta, Ma, PRB 22, 1305 (1980); Fisher, PRB 50, 3799 (1994).

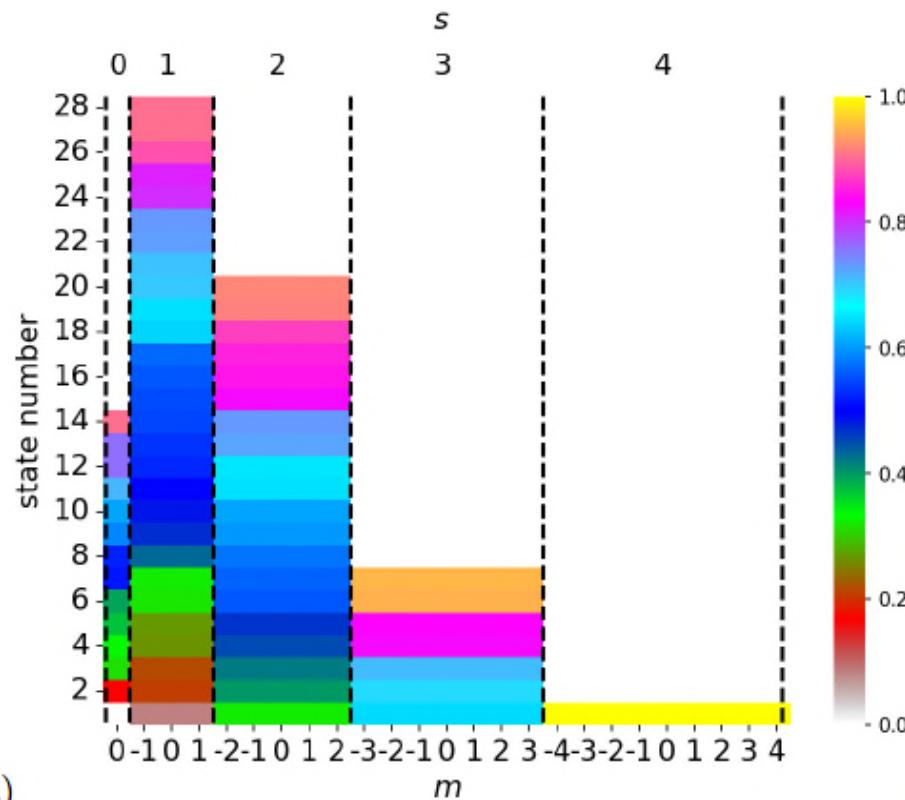
- $P(J)$ peaked at $J=0$ with long-tail for $J>0$
- Let's look at more $P(J)$'s
- Assure that $J_{ij} > 0$ for all i,j to stay *antiferromagnetic*



(a)

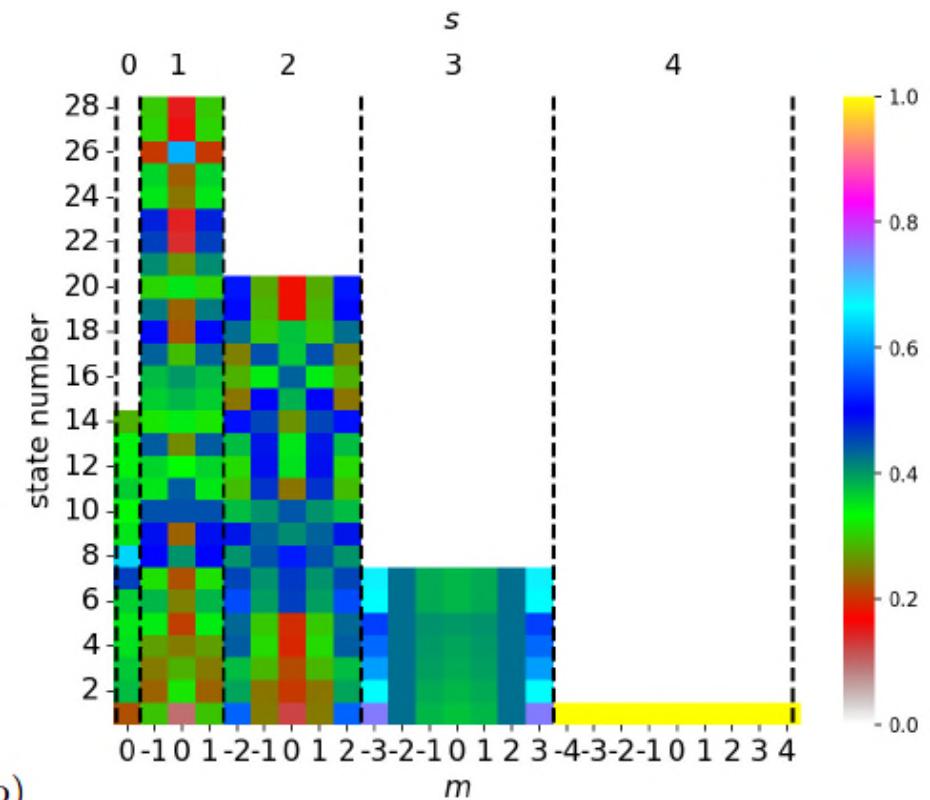
SU(2)-invariant, i.e. S^2 and S_z conserved
(quantum numbers s, m)

energy



(a)

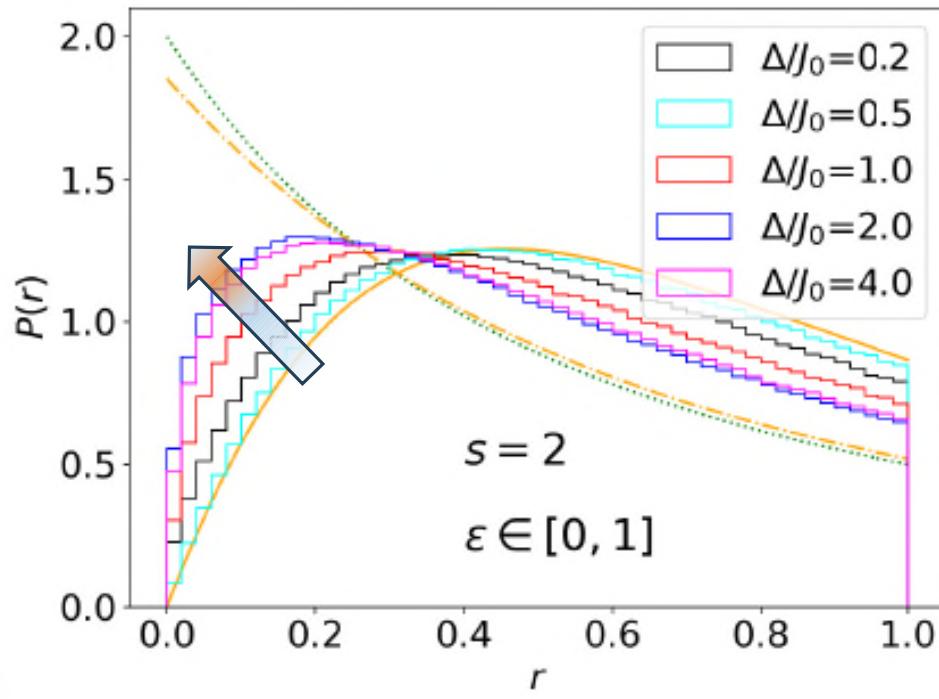
participation ratio



(b)

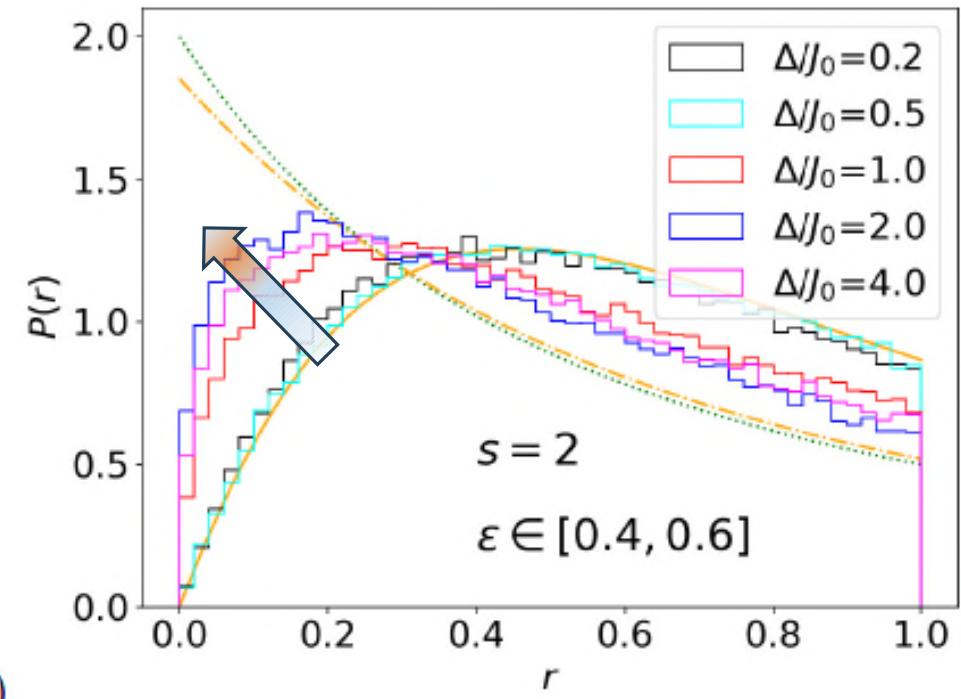
r -value distributions

- full spectrum:



(a)

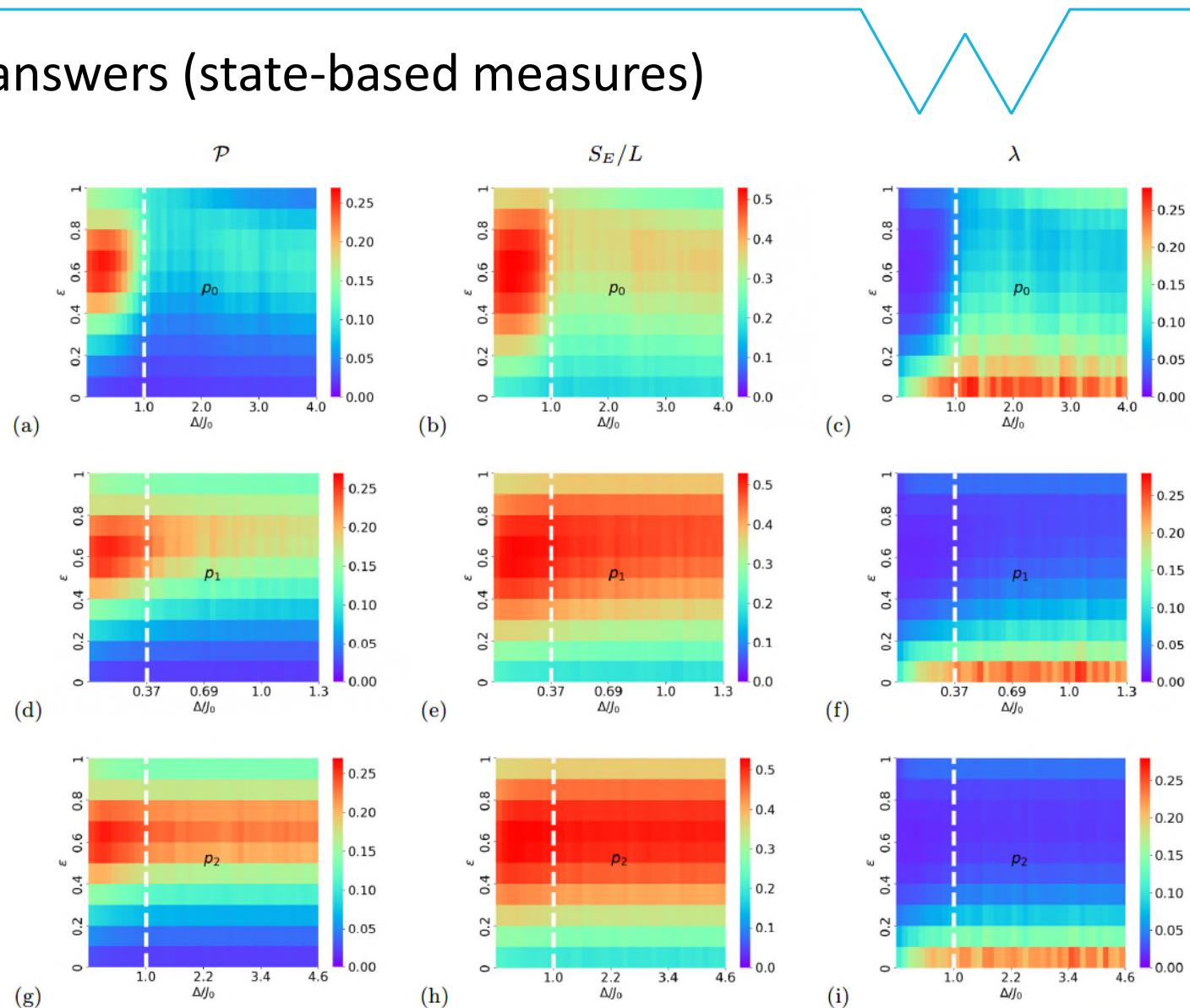
- centre of spectrum:



(b)

Different $P(J)$ give different answers (state-based measures)

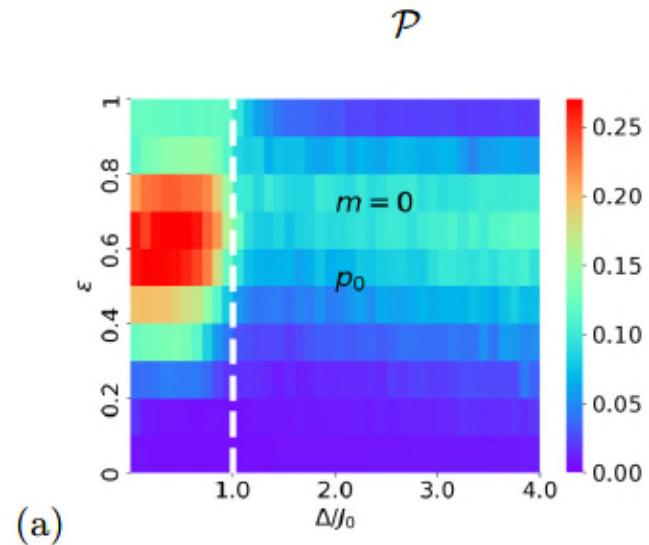
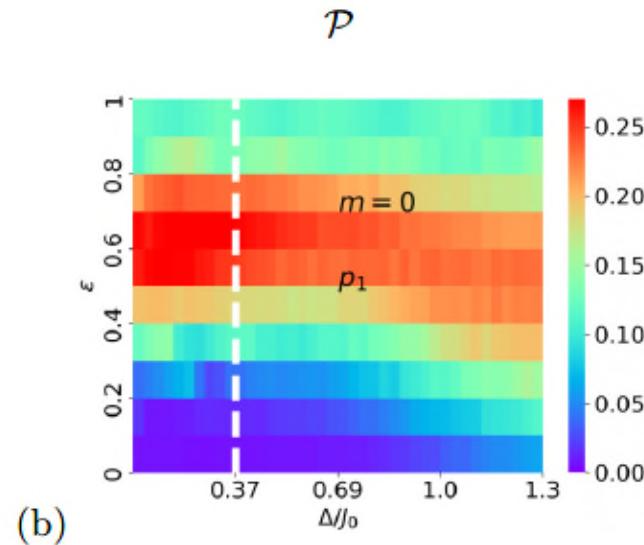
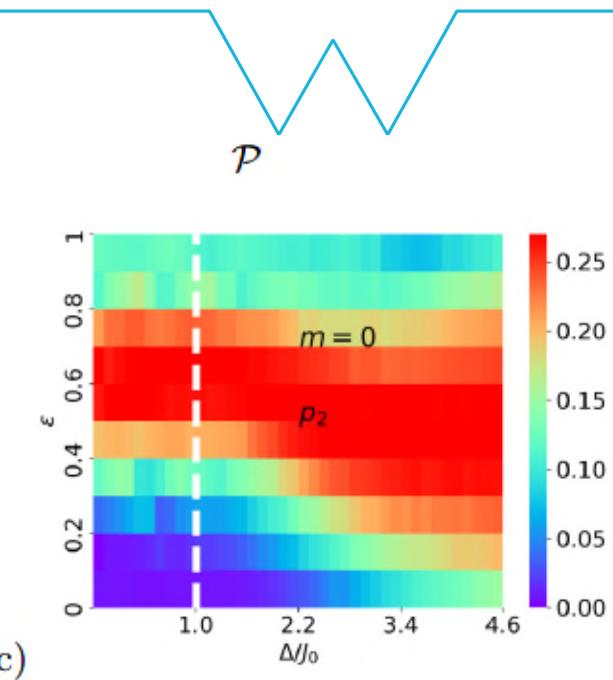
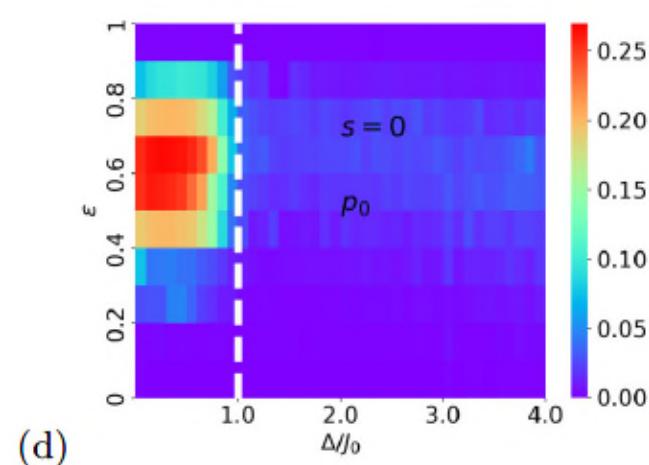
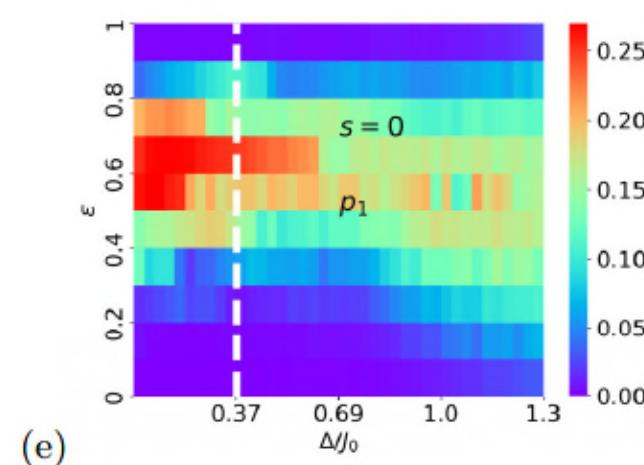
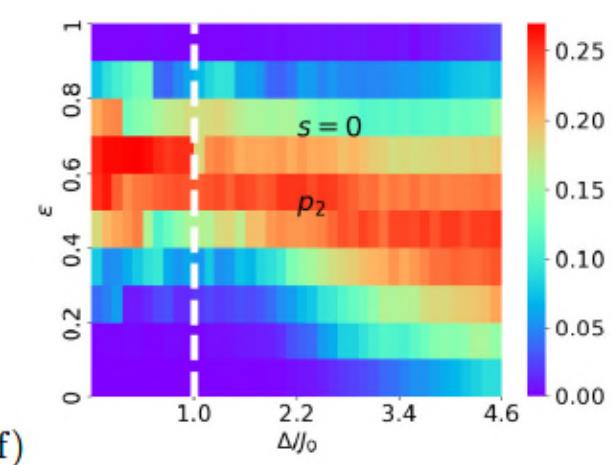
- transition when FM couplings become important?



- weak transition?

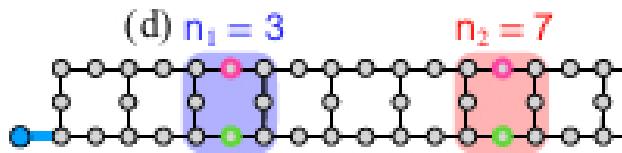
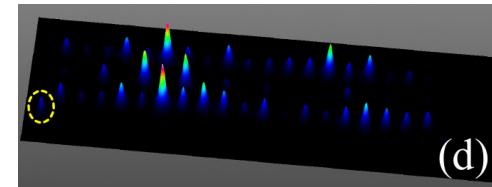
- no transition?

Different sectors give different answers



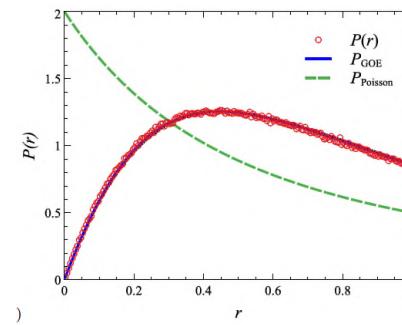
Conclusions/summary/outlook

- Flat band systems, CLS, can be used for storage

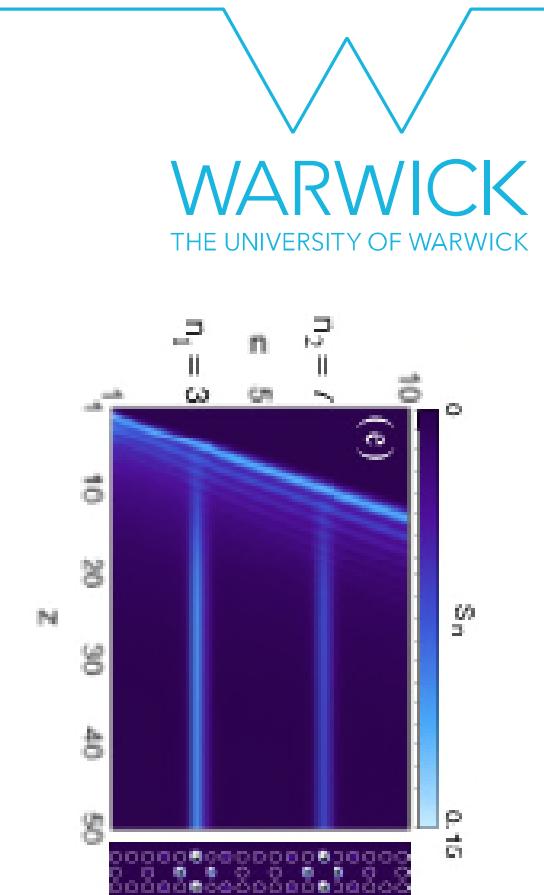


"Quantum storage with flat bands", C. Danieli, J. Liu, RAR, R. A. Vicencio, arXiv:2508.01846

- Quasi-period systems show GOE



- Many-body localization uses ELS



Thanks for your attention!

These results are contained in

X. Mao, J. Liu, J. Zhong, and R. A. Römer, Phys. E Low-Dimensional Syst. Nanostructures **124**, 114340 (2020).

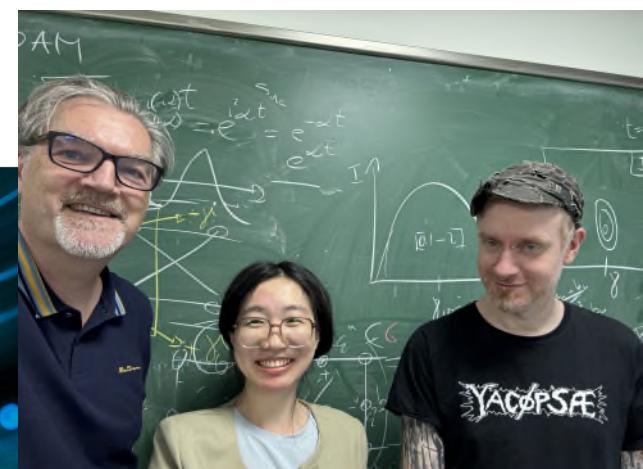
J. Liu, X. Mao, J. Zhong, and R. A. Römer, Phys. Rev. B **102**, 174207 (2020).

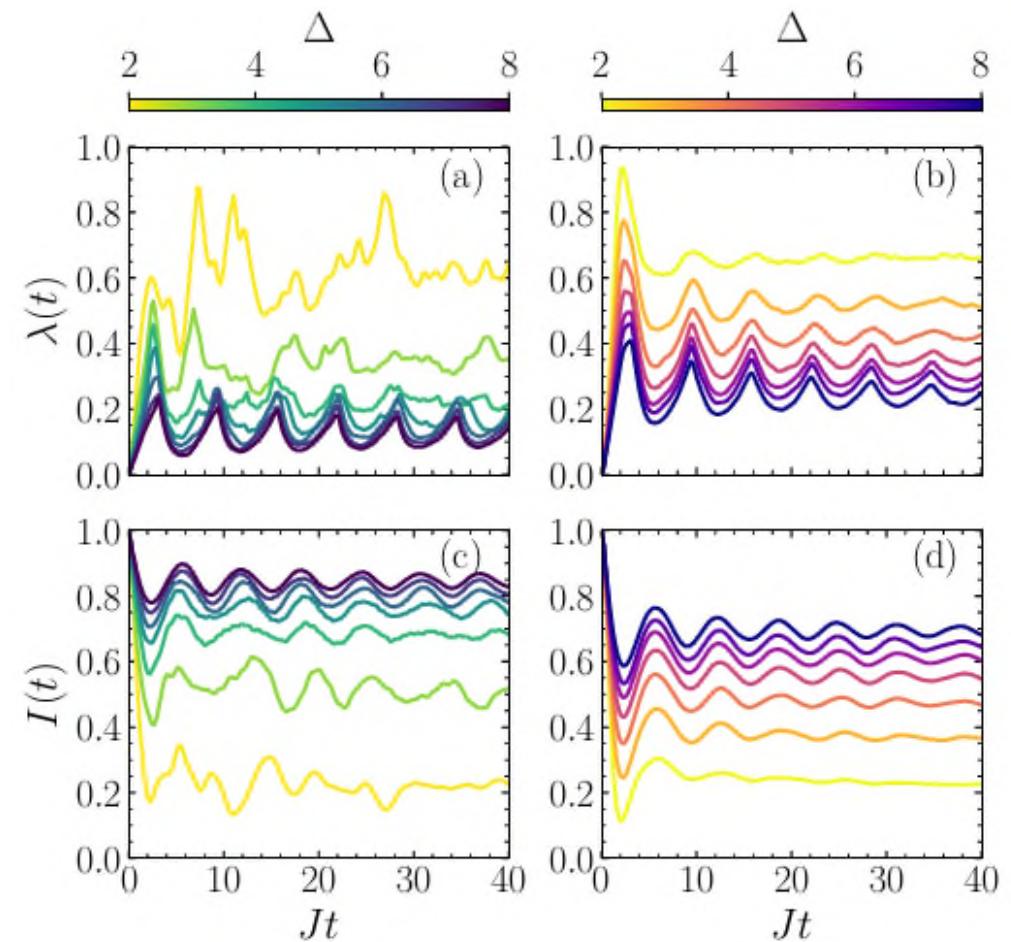
J. Liu, X. Mao, J. Zhong, and R. A. Römer, Ann. Phys. (New York) (2021).

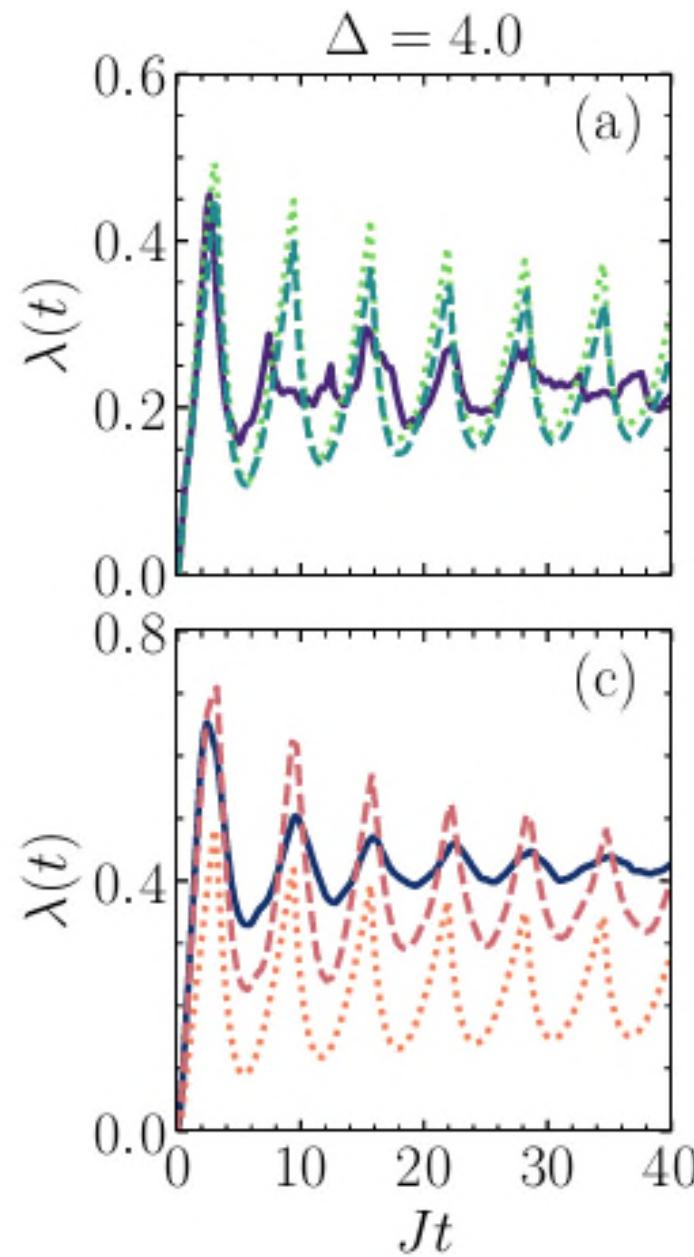
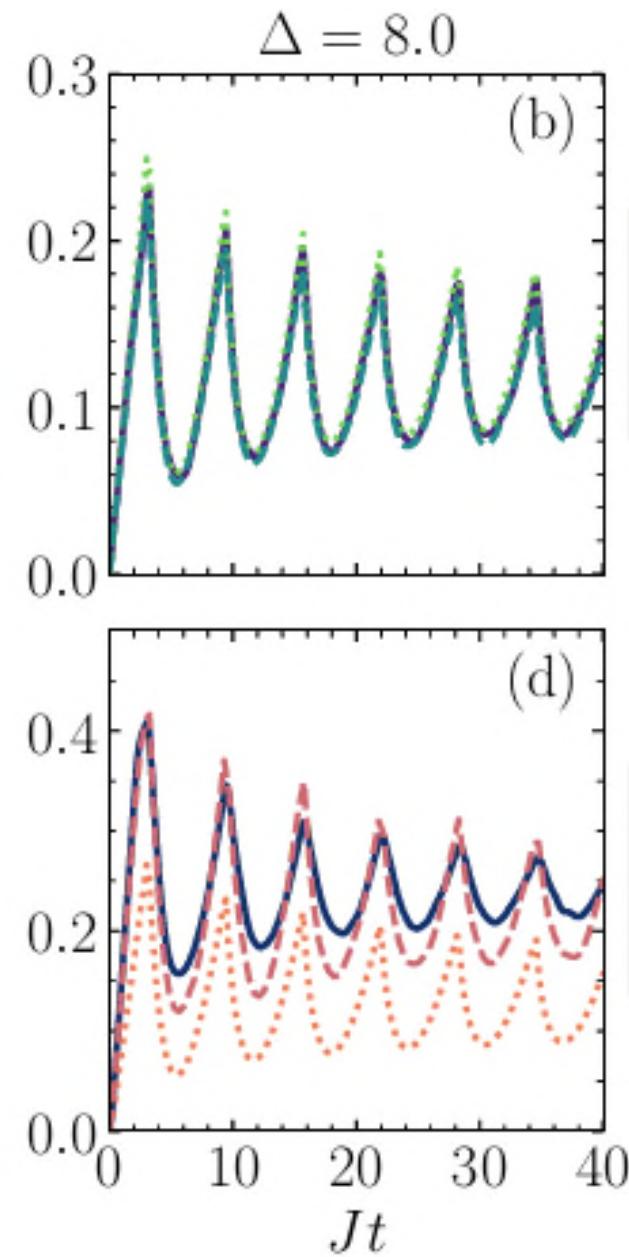
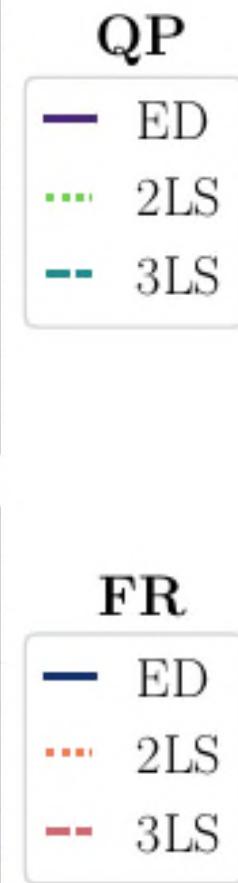
J. Liu, C. Danieli, J. Zhong, R. A. Römer, Phys. Rev. B **106**, 214204 (2022)

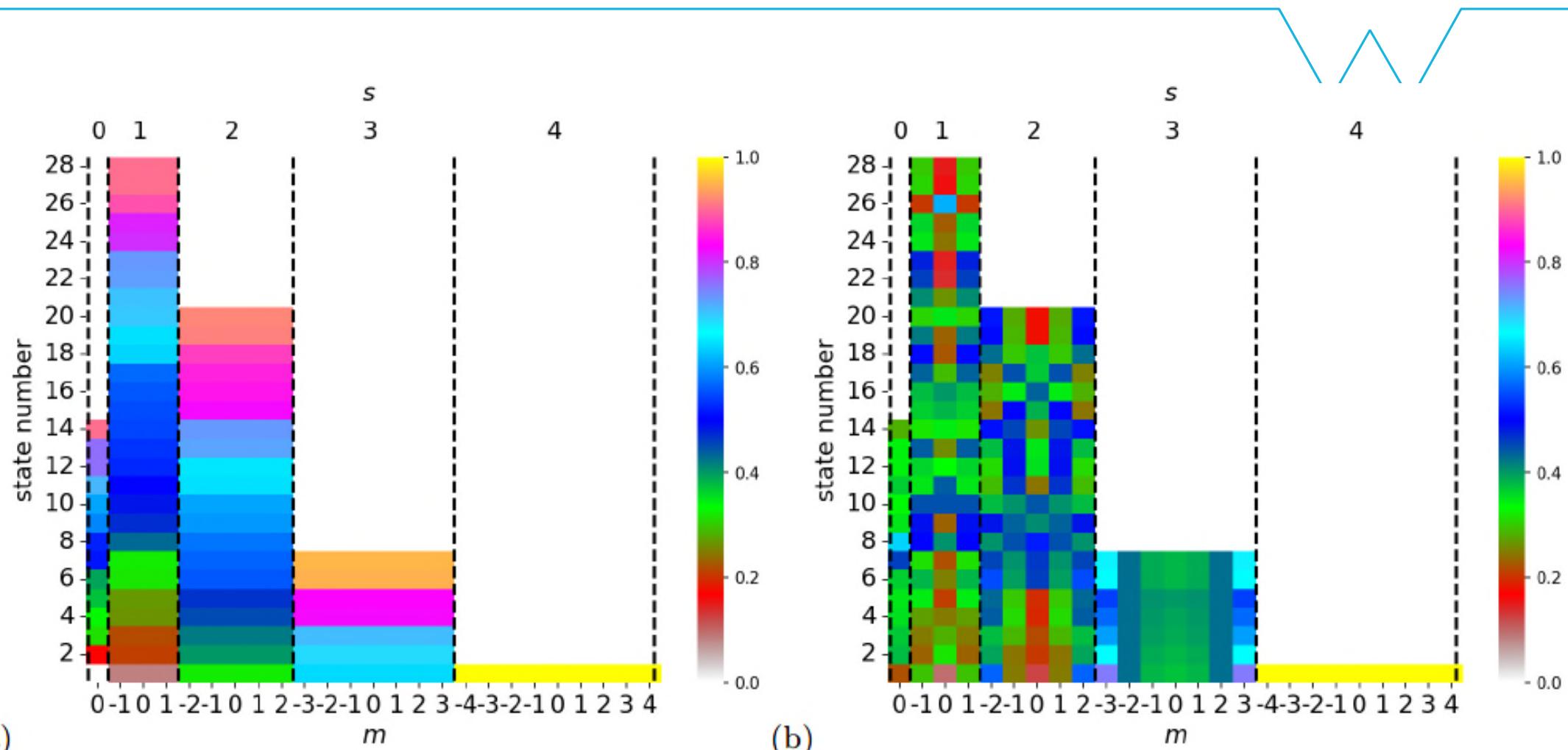
C. Danieli, J. Liu, RAR, submitted to Eur. Phys. J. B, (2023), arXiv:2309.04227

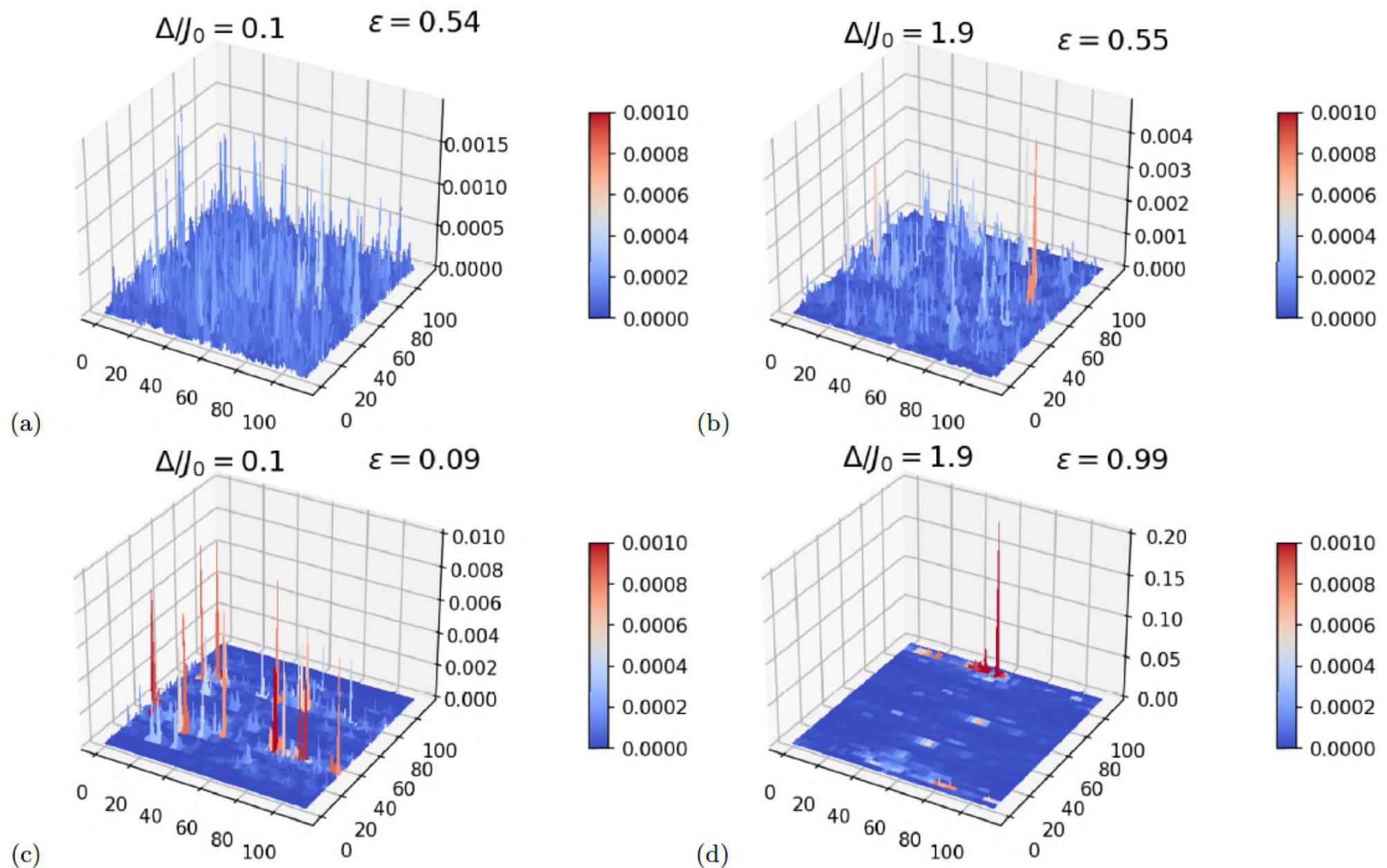
C. Danieli, J. Liu, RAR:

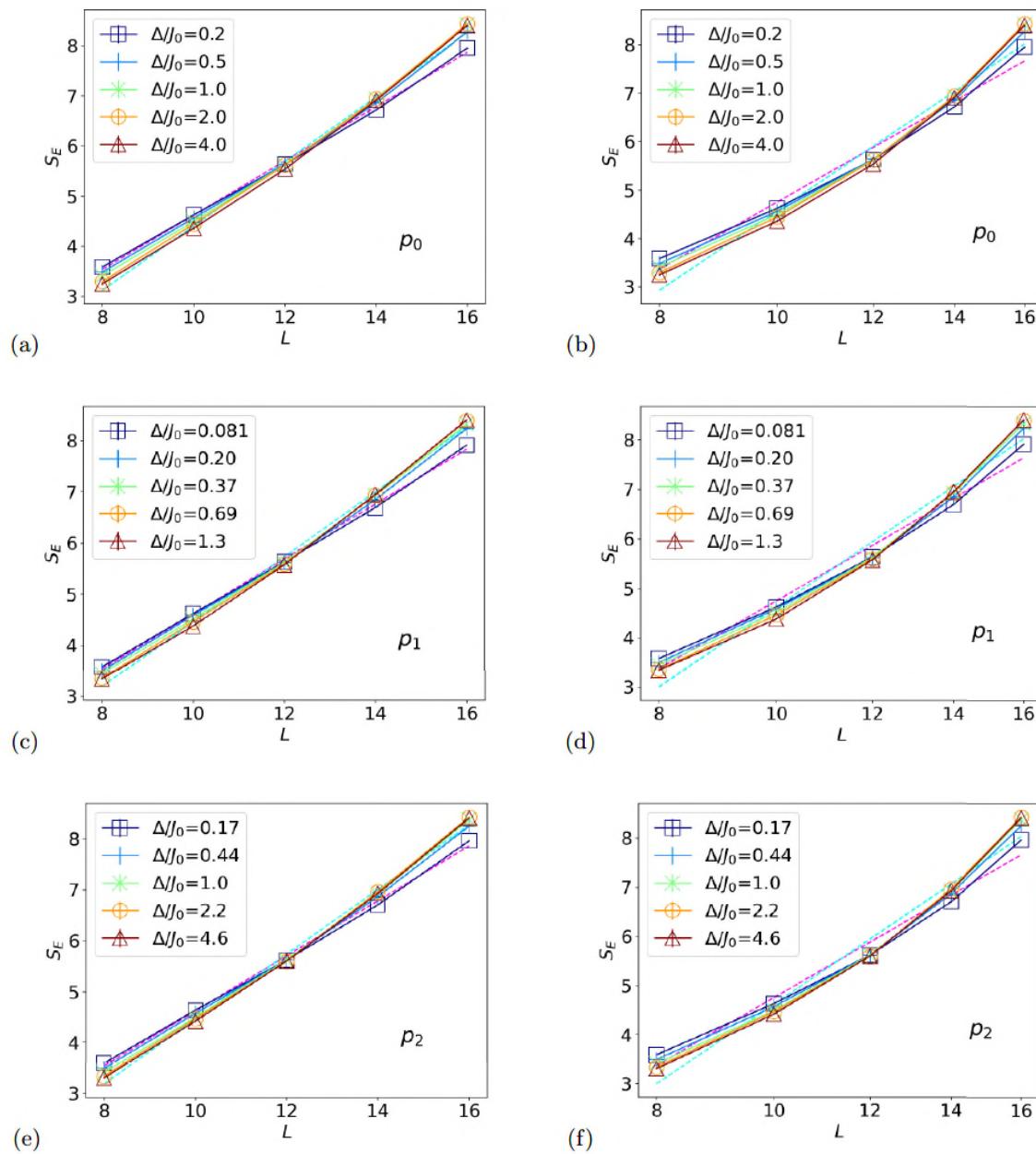


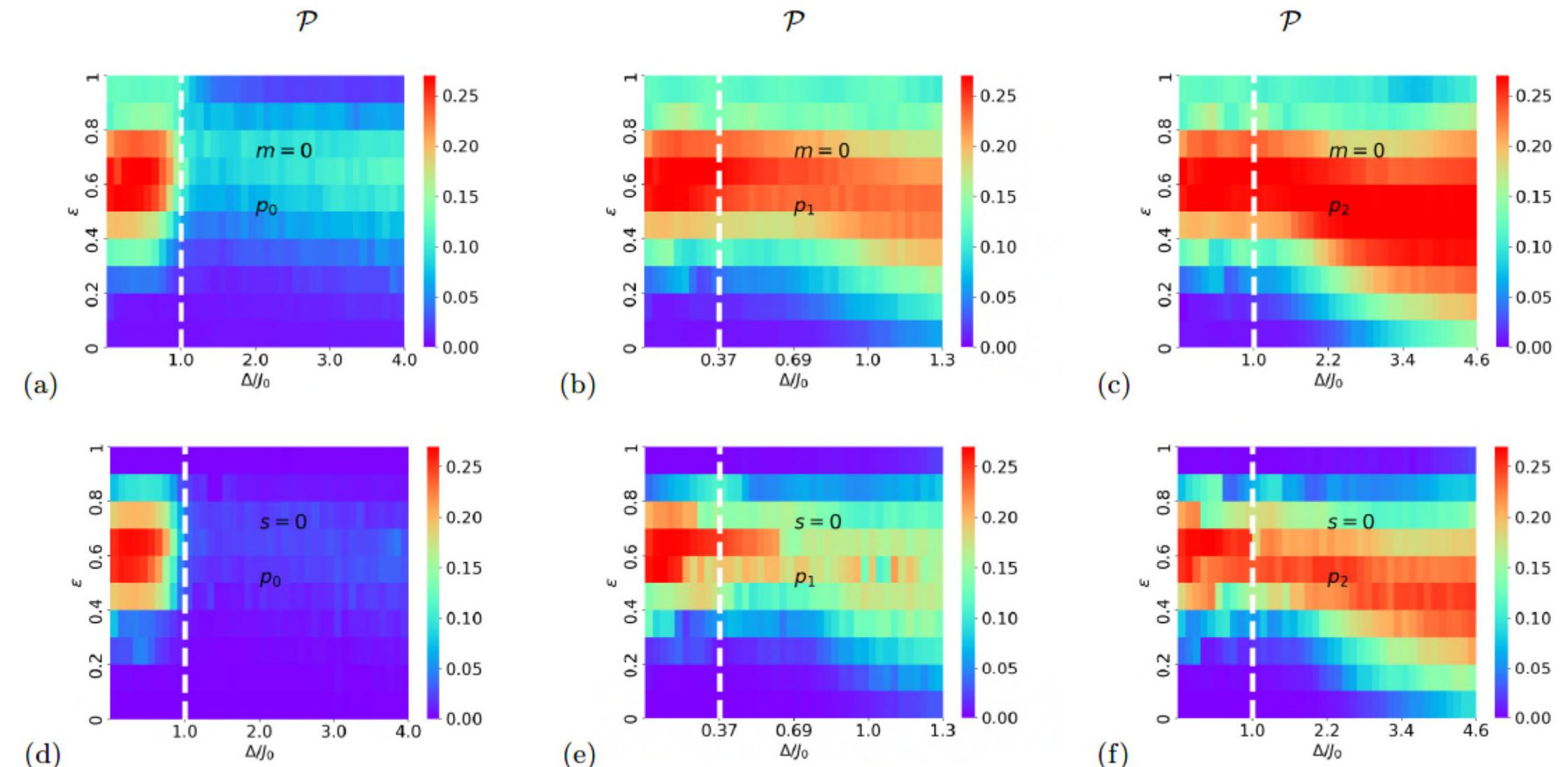


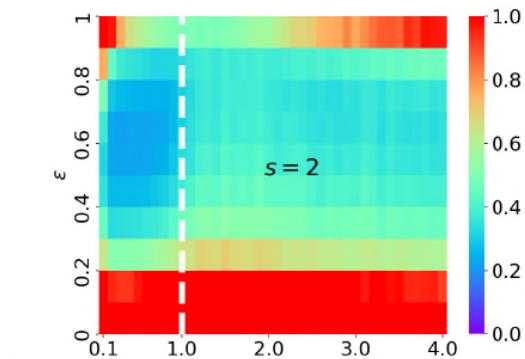




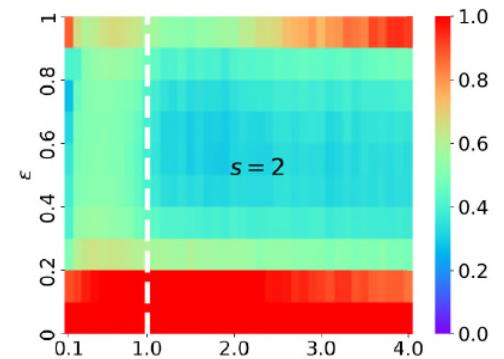




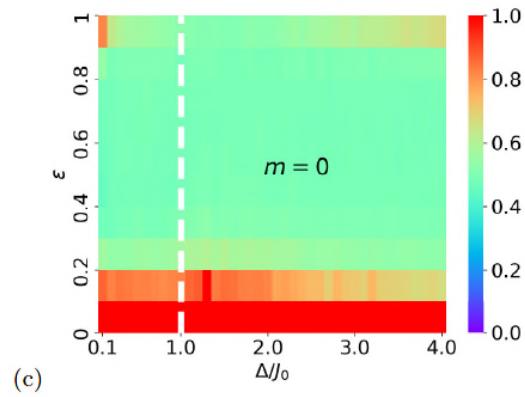




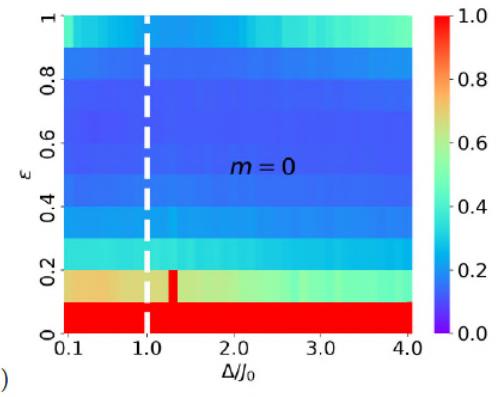
(a)



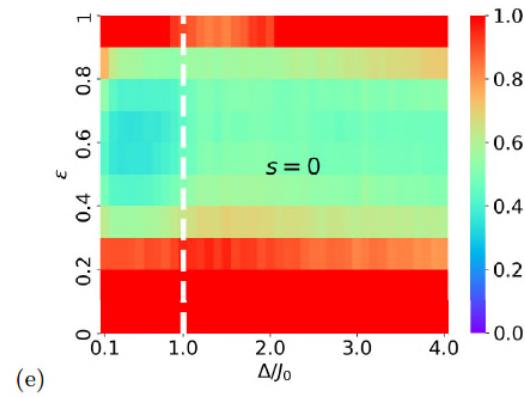
(b)



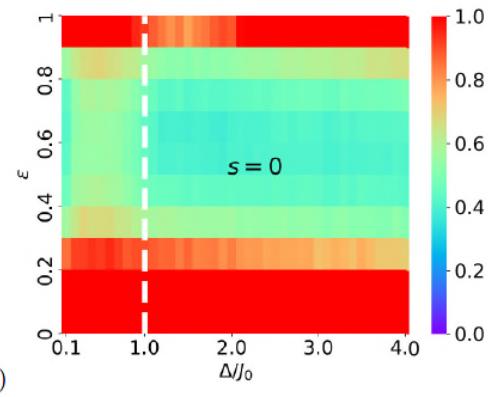
(c)



(d)



(e)



(f)