Wikipedia, 2004

The 3D Anderson model with disorder \/\/—

Kramer, B., & MacKinnon, A. (1993). WARW|C|<
Localization: theory and experiment. Reports on THE UWE@T’Y’OF WARWICK
metal Progress in Physics, 56(12), 1469-1564. //
/
MIT * Phase diagram in 3D /
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insulator
* Divergent localization length %,

f"'lX - Xcl_v K
withX = EorW *
v = critical exponent

v
5 v = 1.590(579,602) 6 0 B
[Slevin+Ohtsuki, PRL 82, 382 (1999)]




Spectral measures for
Anderson localization in
variants of the “standard
model”

Flat bands, quasi-periodic electron models and many-body interactions

RA Romer, and many others (see later citations ...)

H= ) = )

(r+rr)

STROM, Nov 2025



Works pUb|IShEd in [warwick.ac.uk/rudoroemer/publications]
Flat bands:

[203, 197] + [194] "Unconventional delocalization in a family of 3D Lieb lattices” J. Liu, C. Danieli, J. Zhong, RAR, Phys. Rev. B 106,
214204 (2022)+ [186,182,180]

Quasi-periodic AB tiling:

[189] "The GOE ensemble for quasiperiodic tilings without unfolding: r-value statistics”, U. Grimm, RAR, Phys. Rev.
B 104(6), L060201 (2021); [20] "Level Spacings Distributions of Planar Quasiperiodic Tight-Binding Models®, J. X.
Zhong, U. Grimm, RAR, M. Schreiber, Phys. Rev. Lett. 80, 3996-3999 (1998).

Many-body and disorder:

[200] "Spectral and Entanglement Properties of the Random Exchange Heisenberg Chain® Y. Gao, RAR, Phys. Rev.
B 111, 104202 (2025)



Compactly localized states (CLS) imply flat bands (Ex: Lieb models) \/\/—

WARWICK

THE UNIVERSITY OF WARWICK

L3(1) L3(2) L3(3) L3(4)

Ecis =20 EcLs = 1 Ecis =B =0,1V2, EcLs = X6,

§=1,forf=4V2,  §=(1++5)/2
¢=—1,forf =0,



Lieb model in 2D and its extensions, the clean case

L,(1) L,(2) L,(3) L,(4)

[also Da Zhang, Yigi Zhang, Hua Zhong, Changbiao Li, Zhaoyang Zhang,
Yanpeng Zhang, Milivoj R. Beli¢, “New edge-centered photonic square
lattices with flat bands”, Annals of Physics 382 (2017), 160-169]

High-Tc SCs

CuOx planes

* L,(n) exhibits
°n and
n—+1

* Simple “square
lattice” structure
makes it straight-
forward to study

e |deal test case for
flat band physics



ABX3 Perovskite

. . . . X = Lieb sites
Lieb model in 3D and its extensions, the clean case B = cube sites

A = not present

* L5(n) exhibits
L3(1) L3(2) L£:(3) L(4) °n and
‘n+1
* Simple “square
lattice” structure
makes it straight-
.09 o) .m0 (=77 forward to study

* |deal test case for

H = Z E |rNr| — z trpr [T flat band physics
T in 3D

(r#rr)



Further experimental realizations

[1] Guzman-Silva, New J. Phys. 16, 063061 (2014).

H [1]J. Vidal et al., Phys. Rev. Lett. 81, 5888 (1998). . [2] R. A. Vicencio et al., Phys. Rev. Lett. 114, 245503 (2015).
EIeCtromc ﬂat band [2] C. C. Abilio et al., Phys. Rev. Lett. 83, 5102 (1999). PhOtOﬂIC ﬂat band [3]S. Mukherjee et al., Phys. Rev. Lett. 114, 245504 (2015).

H\ﬁ .m

Y6 2 cos(n V3 Dz,/ /3 Dy /D,
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The first experiment: Superconducting wire network

. [1] R. Shen, Phys. Rev. B 81, 041410 (2010). 1
Ultra-cold atoms in an [2] V. ApZ?a, PJ;S. :gV.ASZ’ 041402 (2010). Atomic flat band [1] R. Drost et al., Nat. Phys. 13, 668 (2017).

; ) [2] M. R. Slot et al., Nat. Phys. 13, 672 (2017).
. [3]1S. Taie er al., Sci. Adv. 1, e1500854 (2015).
optical flat band

Dispersive band Flat band

STM for chlorine monolayer on a Cu(100) (surface)



The fate of the compactly-localize states (CLSs) \/\/—

WARWICK

 What happens in the presence of disorder? THE UNIVERSITY OF WARWICK

e 2D:[180] "Disorder effects in the two-dimensional Lieb lattice and its extensions”, X. Mao, J. Liu, J. Zhong, RAR, Physica E 124,
114340 (2020)

* 3D:[182] "Localization, phases and transitions in the three-dimensional extended Lieb lattices”, J. Liu, X. Mao, J. Zhong, RAR, Phys.
Rev. B 102, 174207 (2020)

 What happens for CLS-preserving disorder?

e [194] "Unconventional delocalization in a family of 3D Lieb lattices”, J. Liu, C. Danieli, J.
Zhong, RAR Phys. Rev. B 106, 214204 (2022)

e Can we engineer CLS-preserving “Lieb meta-materials”?

* [197]"Quantum engineering for compactly localized states in disordered Lieb lattices”, C. Danieli, J. Liu, RAR, Eur. Phys. J. B97, 128
(2024), arXiv:2309.04227

e How to load, store and read-out quantum states via CLSs?
e Current work: C. Danieli, J. Liu, RAR, R. A. Vicencio, https://doi.org/10.48550/arXiv.2508.01846



CLS-preserving disorder? \/\/—

 special disorder at cube sites only, no disorder at Lieb WARWICK
sites -> CLS will su rV|Ve|” l l l l l THIiVERSTYOFWARWCK
E—
(T
>
(T
—) <
— S



Extended Lieb models in 2 and 3D with CLS-preserving disorder \/\/—

WARWICK
° DOS LZ (1) LZ (2) THE UNIVERSITY OF WARWICK

* TMM:

* much harder since effectively less disorder on renormalized sites, hence harder
to converge

* How to compute modified phase diagrams for CLS-preserving disorder?



Energy-level ratio statistics (without unfolding) \/\/—

V. Oganesyan and D. A. Huse, Phys. Rev. B 75, (2007): }H/E\{/N%\ng&gé
1
0<r, =min{s,,s, ,}/ max{s,,s, ,} <1 mean :(r) = [P(r)rdr
(s, =E,—E, ) ’
I:>Poisson (r)

(r)oe =0.5307

P(r) Pooe (1)

(r)

<r>Poisson =0.386



Does it work? Testing for the full disorder, equal on cube and Lieb \/\/—

* TMM: * Sparse-diagonalization ﬂﬁlﬁ%ﬂé
* Phase boundaries determined * Phase boundaries determined from

from scaling behavior with (r) for M3 = 103,203, i.e. sites
small M? = 64,8%,10% = N = (3 x 10)3 = 27000, (3 x 20)3 = 216000
36, 64,100 (with 99% target
accuracy)

L3(1) <r>Poisson <r>Poisson

<r>GOE

<r>GOE

L3(1) M =10 L3(1) M =20



3D Lieb model with CLS-preserving disorder \/\/—

£4(1) Lo WARWICK

M =20 M =20



3D Lieb model with CLS-preserving disorder, 15t results

wie

WARWICK

THE UNIVERSITY OF WARWICK

(")GOE

e “inverse” Anderson transition?

* CLS appear to show (r) values for GOE. Superposition of CLS!

* Non-CLS states close to FB energy £=0!? m———)

* BORING? No more!



TMM: \/\/—

M? = 162(< 0.1%), 182,202, -+, 262 (< 0.5%) WARWICK

THE UNIVERSITY OF WARWICK

\

E=1
v = 1.51(5)
E=04

v = 1.51(4)



(r) +(z)-values: s _ 163,183,203, -+-,243, L = 4 x N®

10000 samples for each disorder value

(r)

~_E=1

v = 1.54(9)

E=1

v = 1.44(10)
|En_ENN|
|En—ENnnN|

|Zn| —

wie

WARWICK

THE UNIVERSITY OF WARWICK

(r) (r)



Enhancement of CLS stability

* Projected wave function

D @ =1

reall N3
> eI, ) el
reLieb recube

* Close to CLS at E = O, disorder
moves dispersive states
»Towards E = 0 when on Lieb sites
»Away from E = 0 when on cube sites

L3(1)

wie

WARWICK

THE UNIVERSITY OF WARWICK



No “inverse Anderson” transition — something else \/\/—

* TMM or ELS or wave functions (P) cannot identify a single, system-size independent WARV\”C'(

. . THE UNIVERSITY OF WARWICK
crossing point

* So either our system sizes M? X oo (TMM) up to M = 20 or N3 (ELS, WF) are too small or
this is not a “transition”, but a more gentle crossover!




ELS for quasi-periodic tilings H = z trr,lr)(T'M/—

* cover space without gaps or overlaps but never repeat exactly. (rr1) WAR\/\”CK
* local regularity with global aperiodicity THE UNIVERSITY OF WARWICK
* wavefunctions shows scale-invariant fluctuations across the tiling.

We studied Ammann-Beenker tilings up to 157369 vertices and tilings with random “phase” flips
including up to up to 8358000 r-values.

AB tiling, inflation 3 Periodic approximant Phase-flipped AB
[cut-out square] approximant



ELS for quasi-periodic tilings W

WARWICK

o DOS iS Splky, HEEdS (Iunf()lding" THE UNIVERSITY OF WARWICK

* with unfolding, universal results are
possible

* without unfolding, results are not
expected to be universal

* we do unfolding”:



ELS is GOE \N—

* when taking into account dihedral WARWICK
symmetry, then 7 independent L
sectors 18 o

e all sectors follow 16 foaag

1.4 fosu

* individual sectors follow o %

_ 1.0
o

TS @
Py (s) = TGXP(—ﬂSZ/‘L) ~ Pgop(S) o8
0.6

- 0.4
* also works for other tilings and

different “cuts” (Sinai-billiard shape)
of AB tiling 00 1 2

||||||I|I
L

o



ELS is GOE, better than Wigner!

¢ in fact, GOE is followed even
better than Wigner surmise

* see small-s and large-s
behaviour for the largest patch
of one irreducible sector

* not often that “disordered”
systems using the “standard
model” show this

J. X. Zhong, U. Grimm, RAR, M. Schreiber, Phys. Rev. Lett.
80, 3996-3999 (1998).

log[1-I(s)]

wie

WARWICK

THE UNIVERSITY OF WARWICK




ELS is GOE in QP tilings W

maybe unfolding did this (we checked already then)? WARWICK

THE UNIVERSITY OF WARWICK

* no, using r-value statistics, i.e. without unfolding gives
same result: GOE

e 4887638 r-values used

U. Grimm, RAR, Phys. Rev. B 104(6), L060201 (2021)

AB tiling, inflation 5 Phase-flipped AB approximants
<r>GOE ~ 0.5307
<r>P0isson =0.386
P (r) = 27(r +12)
4(1 41 +12)5/2
0.526654(1) 0.530347(1)

) = ay



Interactions in the presence of disorder W

 Interactions mix all the (Fock) states, leading to WARWICK
e rgod iCity THE UNIVERSITY OF WARWICK

* disorder leads to localized states, can that be strong
enough to prevent mixing, hence absence of ergodicity?

e we are interested in all states, so not just a ground state
guestion

° poster chiILd/modeI (1D):

L
H = ]Z(S{CSJ-X +87SY)+1, z SZS7 + z h.S?
L

(i) (ij)

H :]Z(c;’cj +h.c.)+]ZZni n; +Zhini
i

(1)) (1))



A picture of MLB:

* L=16, 12870 states
in Fock space (in
m=0 sector)

* roughly equal to
12996=144"

* increasing the
disorder leads to
less Fock states
contributing to
eigenstate -> Fock-
space localization

centre of spectrum

bottom of spectrum



Finite-Size Scaling hints at a transition: W

WARWICK

THE UNIVERSITY OF WARWICK

* Luitz, D. J., N. Laflorencie,
and F. Alet (2015). “Many-
body localization edge in
the random-field
Heisenberg chain”. In:
Physical Review B 91.8, p.
81103.



Even a full phase diagram can be computed: \/\/—

WARWICK

THE UNIVERSITY OF WARWICK

* entanglement-based measure

* Fidelity-based measures
° r-value

* MBL = many-body localization



L
Interactions in the presence of disorder H=) Jy(ctg +he)+1) min

L @ @
_ XX yc¥y
H=) J,(SEsr+575))+1) s2s?
(L)) (L))
random exchange model, retains full SU(2) symmetry

Vasseur et al. [PRB 93, 134207 (2016)] report transition from ergodic states to MBL states
at strong disorders.

Protopopov et al. [PRX 10, 011025 (2020)] find states intermediate between extended
states and MBL states even at strong disorders, i.e. no MBL transition

Siegl and Schliemann (level statistics) argue [NJP 25, 123002 (2023)] for transition from
ergodic phase to a phase that is different from both ergodic and MBL

Saraidaris et al. [PRB 109, 094201 (2024)] suggest that thermalization and delocalization
appear at large system sizes, L = 48, using tDMRG

Han et al. [arXiv:2411.09368] found no evidence of an MBL transition studying the time
and disorder dependence of multifractal exponents



-> a complicated model!

* ground state properties real-space renormalize to
random singlet phase with increasing disorder:

Ma, Dasgupta, Hu, PRL 43, 1434 (1979); Dasgupta,
Ma, PRB 22, 1305 (1980); Fisher, PRB 50, 3799 (1994).

* P(J) peaked at J=0 with long-tail for J>0

* Let’s look at more P(J)’s

* Assure that /;; > 0 forall i, to
stay antiferromagnetic

[200] "Spectral and Entanglement Properties of the Random Exchange
Heisenberg Chain” Y. Gao, RAR, Phys. Rev. B 111, 104202 (2025)



SU(2)-invariant, i.e. S$and S, conserved \/\/—

(quantum numbers s,m) WARWICK

THE UNIVERSITY OF WARWICK

energy participation ratio



r-value distributions \/\/—

WARWICK

THE UNIVERSITY OF WARWICK

* full spectrum: * centre of spectrum:

N N



Different P(J) give different answers (state-based measures) W

WARWICK

THE UNIVERSITY OF WARWICK

* transition when FM
couplings become
important?

* weak transition?

* no transition?



Different sectors give different answers \/\/—

WARWICK

THE UNIVERSITY OF WARWICK



wie

WARWICK

THE UNIVERSITY OF WARWICK

Conclusions/summary/outlook

* Flat band systems, CLS, can be used for storage

"Quantum storage with flat bands”, C. Danieli, J. Liu, RAR, R. A. Vicencio, arXiv:2508.01846

* Quasi-period systems show GOE

* Many-body localization uses ELS



Thanks for your attention!

These results are contained in

X. Mao, J. Liu, J. Zhong, and R. A. Rdmer, Phys. E Low-Dimensional
Syst. Nanostructures 124, 114340 (2020).

J. Liu, X. Mao, J. Zhong, and R. A. Rdmer, Phys. Rev. B 102, 174207
(2020).

J. Liu, X. Mao, J. Zhong, and R. A. Romer, Ann. Phys. (New York)
(2021).

J. Liu, C. Danieli, J. Zhong, R. A. Rdmer, Phys. Rev. B 106, 214204
(2022)

C. Danieli, J. Liu, RAR, submitted to Eur. Phys. J. B, (2023),
arXiv:2309.04227

C. Danieli, J. Liu, RAR:
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